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Abstract

We construct a novel set of monthly U.S. sector-level economic conditions indices

from a small but diverse set of sectoral economic indicators using mixed-frequency

dynamic factor models. The resulting indices are driven by a balanced mix of the

underlying indicators and display considerable heterogeneity, particularly in the

depths, timing and duration of their downturns. Moreover, the sectoral economic

conditions are driven by a common factor that explains most fluctuations in the

overall economy and is closely related to aggregate production. Meanwhile, the

service-providing sectors are additionally driven by a correction factor that han-

dles the heterogeneous impacts of the financial crisis and covid pandemic. Lastly,

sector-level GDP growth nowcasts are constructed, which are found to consistently

outperform a simple autoregressive benchmark for almost all sectors, especially

during the covid pandemic.
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1 Introduction

Monitoring the current state of the economy is a challenging but pivotal task of decision-

makers in both the private and public sector, especially during times of economic turmoil.

Dating back to Burns and Mitchell (1946), it has long been recognized that examining

current economic conditions should revolve around the comovement of different measures

of economic activity, rather than just focusing on a single economic indicator only (Lucas,

1977; Diebold and Rudebusch, 1996). Starting with Stock and Watson (1989, 1991), a

popular approach to implement this idea is to construct an economic conditions index

from multiple indicators using a dynamic factor model (see, among others, Mariano and

Murasawa, 2003; Aruoba et al., 2009; Lewis et al., 2022).

These indices generally focus on aggregate economic activity. However, policy makers

and investors are not only interested in aggregate activity, but also in the conditions of

each underlying sector. For example, they want to know which sectors are hit hardest

by economic downturns or to anticipate which sectors are leading or lagging the business

cycle. Indeed, there is strong evidence that sectors within an economy exhibit diverse be-

haviour over the business cycle (see, among others, Fok et al., 2005; Chang and Hwang,

2015; Camacho and Leiva-Leon, 2019). Interestingly, most empirical work on sectoral

economic activity focuses on one specific economic indicator only like industrial produc-

tion or employment, while much less attention has been given to more broadly tracking

sectoral economic conditions.

In this paper, we construct a novel set of 20 monthly U.S. sector-level economic

conditions indices at the two-digit level of the North American Industry Classification

System (NAICS) for the period January 1991 to September 2021. These indices are

based on a small but diverse set of sectoral economic indicators observed at monthly

and quarterly frequencies. Specifically, we include output and labor-market variables as

well as sales, revenue and personal income. We obtain the indices by estimating sector-

specific mixed frequency dynamic factor models that summarize the (co)variation in the

underlying sectoral indicators into a single index.

The resulting sector-level indices are generally driven by a balanced mix of the under-

lying variables, highlighting the importance of combining different measures of sectoral

economic activity. Moreover, the indices show that sectors display considerable hetero-

geneity over the business cycle, emphasizing the relevance of sectoral disaggregation.
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Specifically, we find substantial differences across and within recession periods in the

presence and depth of sector-level downturns, as well as in their timing and duration.

Most sectors experience deeper drops in economic activity during the covid pandemic

than during the financial crisis and especially the dot-com bubble. In particular, service-

providing sectors like health care, arts and accommodation display the deepest drops

during the pandemic, while they are only mildly affected by the other recessions. Mean-

while, sectors that are closely related to production like construction and manufacturing

experience drops in economic activity that are roughly similar in magnitude during the

pandemic as during the financial crisis. Following the cycle phase methodology of Hard-

ing and Pagan (2006), it becomes clear that the timing of the peaks before recessions

are quite dispersed, while the troughs at the end of recessions are highly concentrated,

especially after the financial crisis and covid pandemic. Consequently, the sectoral growth

cycles exhibit considerable differences in the lengths of their phases.

Next, we examine the comovement of sectoral economic conditions with the over-

all state of the economy. Most sectors are highly cyclical and closely follow aggregate

economic conditions, particularly manufacturing, wholesale trade and retail trade. This

comovement between sectoral and aggregate economic activity is generally stronger dur-

ing recessions than during expansions. Based on the synchronization measure of Harding

and Pagan (2006), the sector most in sync with the overall economy is manufacturing,

highlighting its dominant role in the aggregate growth cycle. On the other hand, sev-

eral other sectors like agriculture, utilities and healthcare move more independently with

almost no evidence of synchronization with the aggregate economy.

Monitoring the economic state of each sector is the most obvious application of the

estimated indices. However, several other purposes can be imagined. In this paper, we

consider two of these further uses in detail. First, we demonstrate the possibility to revisit

existing analyses that have been based on one type of sectoral economic activity only,

but which can now be generalized to broader economic conditions. Specifically, we revisit

the analyses in Foerster et al. (2011) and Andreou et al. (2019). Both studies aim to

investigate whether common shocks to sectoral economic conditions are able to explain

economy-wide fluctuations. The former study focuses on industrial production data,

ignoring the service-providing sectors, whereas the latter extends this by additionally

including annual GDP data for non-industrial production sectors. Instead, our analysis

2



uses a broader measure of economic activity rather than only output-related variables

and is based on monthly indices for all sectors, including the non-industrial production

ones. Corroborating Foerster et al. (2011) and Andreou et al. (2019), we find that the

first common factor of the sector-level indices explains most of the variation in aggregate

economic conditions and is closely related to the production-related sectors. In addition,

the second common factor serves as a correction factor for the service-providing sectors

that are more severely hit by the covid pandemic and less severely by the financial crisis

than accounted for by the first common factor only.

Second, the mixed-frequency dynamic factor models that generate the sectoral indices

simultaneously produce estimates of latest sector-level GDP growth, which are used as

inputs for the indices. To examine the accuracy of these estimates, we conduct a nowcast-

ing exercise of sector-level GDP growth. These GDP figures are typically published with

a three-month delay, while other sectoral information is released much earlier, indicating

that there is much to gain in terms of improving nowcasts. Indeed, the nowcasts from the

mixed-frequency dynamic factor model are generally more accurate than the ones from a

simple autoregressive benchmark, with an average improvement of 22% in terms of root

mean squared forecast errors. This relative outperformance is consistent throughout the

out-of-sample period from 2010Q1 to 2021Q2, but particularly pronounced during the

covid pandemic. In fact, the nowcasts made during the covid pandemic are often close

to the realized GDP growth values. This emphasizes the accuracy and potential of these

nowcasts and justifies their use as inputs for the sector-level indices.

This paper is closely related to and builds on two strands of literature. First, it adds

to the vast literature on constructing economic conditions indices using dynamic factor

models, initiated by the seminal work of Stock and Watson (1989, 1991). Prominent

advances in this line of research are incorporating mixed-frequency data (Mariano and

Murasawa, 2003; Nunes, 2005; Aruoba et al., 2009), moving to higher frequencies such

as weekly (Lewis et al., 2022; Wegmüller et al., 2023) or constructing indices at the U.S.

state-level (Crone and Clayton-Matthews, 2005; Baumeister et al., 2022). We contribute

to this literature by constructing a set of monthly U.S. sector-level economic conditions

indices, which has to the best of our knowledge not been pursued yet. Somewhat related

work by Carriero and Marcellino (2011) constructs five sector-level confidence indices on

the current status of the economy based on survey-data for European countries, but these

3



indices are not composed of any real economic activity data. In addition, some studies

produce an index for just one sector only like the weekly retail trade index of Brave et al.

(2021) or the transportation services index from the U.S. Department of Transportation

(Young et al., 2014). Yet, these indices are often based on sector-specific sources of

economic activity, making them not directly comparable to the economic activity of other

sectors. The benefit of the estimated sectoral indices in this paper is that they are based

on a similar set of economic indicators for all sectors, making them directly comparable.

Second, this paper contributes to the literature on the heterogeneous dynamics of

sectoral economic activity. So far, most of this work focuses on specific economic variables

like industry-level production (Fok et al., 2005; Chang and Hwang, 2015; Foerster et al.,

2011; Guisinger et al., 2021; Brunner and Hipp, 2023; Graeve and Schneider, 2023), sector-

level employment (Camacho and Leiva-Leon, 2019; Anderson et al., 2020) or sector-level

GDP (Karadimitropoulou and León-Ledesma, 2013; Li and Martin, 2019; Böhm et al.,

2022). However, sectoral economic conditions are not just described by one type of

activity only, but by the comovement of several activities, just as for total economic

conditions. Moreover, focusing on one source of sectoral economic activity often comes

with its limitations. For example, using solely industry-level production data ignores a

large part of the economy related to the service sectors. In addition, sector-level GDP

is only available on an annual basis or, from 2005 onwards, on a quarterly basis (at

least in the U.S.), restricting its usage to assess sectoral activity on a higher frequency or

longer time span. We contribute to this literature by combining various sectoral economic

indicators into a single sector-level index, providing an economic activity measure that

is available at a monthly frequency with a long time span for all sectors. This makes

it possible to more easily conduct sectoral analyses, as demonstrated in this paper by

revisiting the results in Foerster et al. (2011) and Andreou et al. (2019) using a more

complete measure of economic activity.

The rest of the paper is organized as follows. Section 2 describes the mixed-frequency

dynamic factor model and its estimation framework to construct the sectoral indices.

Section 3 discusses the sector-level economic data. Section 4 presents the results of track-

ing sector-level economic conditions, while Section 5 illustrates alternative applications

of the indices. Section 6 concludes.
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2 Constructing sectoral economic conditions indices

2.1 Mixed-frequency dynamic factor model

To estimate the sector-level economic condition indices, we construct for each sector

i = 1, . . . , S a mixed-frequency dynamic factor model. For notational simplicity, we sup-

press the dependence on i, but keep in mind that everything is sector-specific. Let Yt =

(Y M
t

′
,Y Q

t

′
)′ denote a vector with N observed time series that track the economic condi-

tions for a specific sector, including K monthly observed series in Y M
t = (Y M

1,t , . . . , Y
M
K,t)

′

(for example, employment or industrial production) and L quarterly observed series in

Y Q
t = (Y Q

1,t, . . . , Y
Q
L,t)

′ (for example, GDP). The number of monthly and quarterly se-

ries are allowed to differ across sectors. The quarterly variables are only observed ev-

ery third month in the quarter (that is, on t = 3, 6, 9, . . .), while they are considered

missing during the other months. Following Lewis et al. (2022) and Baumeister et al.

(2022), we focus on the year-on-year percentage changes in sector-specific economic ac-

tivity.1 In particular, we compute annual growth rates of Yt , resulting in the vector

yt = (yM
t

′
,yQ

t

′
)′ = (yM1,t, . . . , y

M
K,t, y

Q
1,t, . . . , y

Q
L,t)

′ with yMk,t = ∆12 log Y
M
k,t for k = 1, . . . , K

and yQl,t = ∆12 log Y
Q
l,t for l = 1, . . . , L.

Starting with the monthly observed series, we assume that yM
t has a factor model

representation given by

yM
t = λMft + εMt , (1)

for t = 1, . . . , T , where ft denotes the sector-specific latent factor summarizing its eco-

nomic conditions, λM = (λM1 , . . . , λ
M
K )′ the corresponding factor loadings and εMt =

(εM1,t, . . . , ε
M
K,t)

′ the idiosyncratic components that are uncorrelated with ft at all leads

and lags. In fact, we assume that the whole observation vector yt can be summarized by

a single factor only, but given the moderately small dimension of yt for each sector (that

is, four to six series) this is a plausible assumption. Moreover, following Bańbura et al.

(2011) and Cascaldi-Garcia et al. (2023), we assume that both ft and the elements in εMt

1We opt for annual growth rates to get indices that are less sensitive to volatile monthly changes
(Sarantis, 2001; Nunes, 2005) and therefore smoother and more persistent. Moreover, taking annual
growth rates eliminates the seasonal component in the seasonally unadjusted series (Lewis et al., 2022),
which in our case are the sector-level continued unemployment insurance claims and fuel sales.
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follow a stationary first-order autoregression, that is, ft

εMt

 =

ϕ 0

0 ΨM

ft−1

εMt−1

+

 ηt

νM
t

 , (2)

where ΨM is a K × K diagonal matrix and the error terms ηt ∼ i.i.d. N (0, ω2) and

νM
t ∼ i.i.d. N (0,ΣM) are uncorrelated, with ΣM also a K×K diagonal matrix. In other

words, we assume an exact factor model structure for yM
t in which all cross-sectional

dependence is captured by ft, which is a common assumption in this literature (see,

among others, Stock and Watson, 1989, 1991; Mariano and Murasawa, 2003; Aruoba

et al., 2009). By explicitly modelling the dynamics of the idiosyncratic components, we

allow for possible variable-specific shocks such as strikes in the transportation sector or

sudden drops in oil production due to a hurricane (see, for example, Rothstein, 1997;

Cruz and Krausmann, 2008). Similarly as Stock and Watson (1991), we set ω2 = 1 to

identify the scale of ft. In addition, we normalize the series in yt to have mean zero

and variance one such that the parameters are conveniently scaled for interpretation and

equations (1) and (2) do not require constants.

Moving to the quarterly observed series, we follow Mariano and Murasawa (2003) and

Nunes (2005), and assume that Y Q
l,t is the geometric mean of a latent monthly variable

Y ∗
l,t and its two lags, that is,

log Y Q
l,t =

1

3

(
log Y ∗

l,t + log Y ∗
l,t−1 + log Y ∗

l,t−2

)
,

for l = 1, . . . , L.2 Consequently, taking year-on-year differences results in

yQl,t =
1

3
(y∗l,t + y∗l,t−1 + y∗l,t−2), (3)

where y∗l,t = ∆12 log Y
∗
l,t. We only observe yQl,t for t = 3, 6, 9, . . ., while y∗l,t is never observed.

Next, we follow Nunes (2005) and introduce the cumulator variable ct of Harvey (1989,

Section 6.3.3) that facilitates the temporal aggregation of the monthly latent factor ft

2The standard accounting identity for quarterly variables such as GDP prescribes to take the arith-
metic mean instead of the geometric mean. However, taking the arithmetic mean results in a non-linear
temporal aggregation constraint (Proietti and Moauro, 2006), while the geometric mean keeps this con-
straint linear. Moreover, Mitchell et al. (2005) and Camacho and Perez-Quiros (2010) argue that the
latter is a good first-order approximation of the former for quarterly GDP.
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towards the quarterly observed variables in yQ
t . In particular, the quarterly series of each

sector can be expressed as

yQ
t = λQct + εQt , (4)

for t = 1, . . . , T , with λQ = (λQ1 , . . . , λ
Q
L )

′ and εQt = (εQ1,t, . . . , ε
Q
L,t)

′ being the correspond-

ing factor loadings and idiosyncratic shocks, respectively. Similarly as for the monthly

series, we assume that the elements in εQt follow a first-order autoregressive process.

The corresponding error terms are again independent and normally distributed, that is,

νQ
t ∼ i.i.d. N (0,ΣQ) with L × L diagonal matrix ΣQ, implying an exact factor model

structure for yQ
t as well. Furthermore, the cumulator variable is given by

ct = ξtct−1 +
1

3
ft, (5)

where ξt is equal to zero for the first month of the quarter (that is, for t = 1, 4, 7 . . .)

and one otherwise. Hence, every third month in the quarter, when yQ
t is observed, the

cumulator variable becomes equal to

ct =
1

3
(ft + ft−1 + ft−2),

which resembles the expression under the geometric mean assumption in equation (3).

In other words, the year-on-year growth rate of the unobserved monthly counterpart of

the quarterly variable (y∗l,t) is embodied by the monthly latent factor ft.

We opt for this cumulator-based temporal aggregation scheme of Harvey (1989, Sec-

tion 6.3.3) as it remains tractable in the case of multiple quarterly series. By contrast,

the monthly-to-yearly growth rate aggregation scheme of Mariano and Murasawa (2003)

requires the contemporaneous and first 12 lags of the latent factor, as well as the con-

temporaneous and first 12 lags of the idiosyncratic component for each quarterly series.3

Clearly, this would lead to a huge dimensional state vector for multiple quarterly vari-

ables, slowing down the filtering/smoothing recursions and increasing the computation

time. Meanwhile, the cumulator-based approach only requires to increase the state-vector

dimension by one, independent of the number of quarterly variables, keeping the dimen-

3Specifically, Mariano and Murasawa (2003) define y∗l,t = ∆ lnY ∗
l,t in equation (3), resulting in yQl,t =

1
3 (y

∗
l,t + 2y∗l,t−1 + 3(y∗l,t−2 + . . .+ y∗l,t−11) + 2y∗l,t−12 + y∗l,t−13) for yearly growth rates.
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sion sufficiently low and facilitating tractable estimation.

After establishing the temporal aggregation scheme, we put the mixed-frequency dy-

namic factor model in state-space form. To model the dynamics of the idiosyncratic

components, we follow the approach of Bańbura and Modugno (2014) and include them

in the state vector. Consequently, the observation equation is given as

yM
t

yQ
t

 =

λM 0 IK 0

0 λQ 0 IL



ft

ct

εMt

εQt

+

eM
t

eQ
t

 , (6)

where In denotes an n-dimensional identity matrix. Following Bańbura and Modugno

(2014), an artificial error term et = (eM
t

′
, eQ

t

′
)
′
∼ i.i.d. N (0, τIN) is introduced with τ a

small pre-fixed number (that is, 10−4) such that the complete data log-likelihood can be

written in its exact form (see Appendix A for further details). Finally, by plugging the

dynamics of ft into the cumulator variable expression in (5), the state equation can be

written as 
ft

ct

εt

 =


ϕ 0 0

1
3
ϕ ξt 0

0 0 Ψ



ft−1

ct−1

εt−1

+


1 0

1
3

0

0 IN


ηt
νt

 , (7)

where εt = (εMt
′
, εQt

′
)
′
, νt = (νM

t
′
,νQ

t

′
)
′
, Ψ is an N × N diagonal matrix and υt =

(ηt,ν
′
t)

′ ∼ i.i.d. N (0,Ω) with

Ω =

1 0

0 Σ

 ,

where Σ is also an N ×N diagonal matrix. Together, observation equation (6) and state

equation (7) constitute the sector-specific mixed-frequency dynamic factor model.

2.2 Estimation

Given the model in equations (6)-(7), we need to estimate the unknown parameters in

Θ = {λM ,λQ, ϕ,Ψ ,Σ} and latent factors in Z = (z1, . . . ,zT )
′ with zt = (ft, ct, ε

′
t)

′
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for t = 1, . . . , T . Since Z is unobserved, it is generally not possible to derive a closed-

form estimator of Θ. Instead, one could directly maximize the likelihood function with

respect to Θ in combination with the Kalman filter to estimate Z (see, for example,

Engle and Watson, 1981; Stock and Watson, 1989, 1991). However, a moderately large

dimension of the observation vector yt already results in a large number of parameters

to estimate, making direct optimization of the likelihood computationally cumbersome.

Therefore, we opt for the expectation-maximization (EM) algorithm of Dempster et al.

(1977), which has been adapted by Shumway and Stoffer (1982) and Watson and Engle

(1983) for dynamic factor models in state-space form.

The idea of the EM algorithm is to focus on the complete data log-likelihood of Z

and Y = (y1, . . . ,yT )
′ and to iterate between estimating the latent factors Z by means

of the Kalman smoother (E-step) and estimating the parameters in Θ by maximizing

the expected complete data log-likelihood (M-step). Under some regularity conditions,

Dempster et al. (1977) show that by iterating between these two steps the EM algorithm

converges to a local maximum of the likelihood. Moreover, the M-steps have analytic

expressions for the unknown parameters in Θ, making the algorithm computationally

fast and stable, even in high dimensions. To handle possible missing observations in Y ,

we follow Bańbura and Modugno (2014) and integrate out the missing data from the

likelihood function. For further details on the EM algorithm, see Appendix A.1.

The expressions of the M-steps look generally similar to the ones in, for example,

Shumway and Stoffer (1982) and Bańbura and Modugno (2014). However, there are two

notable differences from the standard M-steps used to estimate state-space models. First,

Opschoor and van Dijk (2023) show that the low-noise observation equation in the serially-

correlated idiosyncratic-component framework of Bańbura and Modugno (2014) leads to

extremely slow convergence in estimating the factor loadings λM and λQ, resulting in poor

estimates of parameters and latent factors. To tackle this issue, we augment the M-steps

of the factor loadings with the ones of the overrelaxed adaptive EM (AEM) algorithm

of Salakhutdinov and Roweis (2003) as recommended by Petersen et al. (2005). Indeed,

Opschoor and van Dijk (2023) show that using the adaptive M-steps for the loadings

speeds up convergence and leads to more accurate parameter and latent factor estimates.

Second, the factor persistence parameter ϕ corresponds to both ft and ct, implying that it

is bounded to certain restrictions. Moreover, the state equation of the cumulator variable
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contains a time-varying indicator ξt, which also needs to be handled. To do this, we follow

the derivation in Holmes (2013) for time-varying system matrices with linear constraints

to obtain the constrained M-step of ϕ. For further details on the derivations of the

M-steps and the AEM algorithm, see Appendix A.2, and for a convergence comparison

between the EM and AEM algorithm, see Appendix A.3.

After obtaining estimates of the parameters in Θ and latent factors in Z, we follow

the approach of Baumeister et al. (2022) and construct for each sector i = 1, . . . , S the

monthly economic conditions index (ECI) as

ECIt = (λ̂′λ̂)−1λ̂′(yS
t − ȳS), (8)

for t = 1, . . . , T , where λ̂ = (λ̂M ′
, λ̂Q′

)′ contains the estimated factor loadings, yS
t con-

tains the N observed variables with the missing values replaced by the smoothed values

from the Kalman smoother and ȳS = 1
T

∑T
t=1 y

S
t .

4 The signs of the estimated loadings

(and factors) are chosen such that the majority of the loadings are consistent with the

cyclicality of the corresponding economic indicator. Compared to using ft, the approach

in (8) leads to a more robust measure of economic conditions that minimizes the effect of

data revisions (Baumeister et al., 2022), while it also facilitates an easy way to decom-

pose the ECIt into its underlying series. For the sake of comparison, we standardize the

indices to have variance one such that they are presented into standard deviation units

from their historical averages.

3 Data

We distinguish 20 sectors in the U.S. economy based on the two-digit level of the North

American Industry Classification System (NAICS). To monitor the economic activity

of each of these sectors, we collect a consistent set of variables that are available for

most sectors and that are widely used to construct economic conditions indices of the

overall economy (see, for example, Stock andWatson, 1989, 1991; Mariano and Murasawa,

2003; Aruoba et al., 2009). Specifically, we use output-related variables such as gross

domestic product (GDP) and industrial production (IP), labor-market variables such

4Note that for the missing values of the quarterly variables we do not use the cumulator variable ct
for t = 1, 2, 4, 5, . . ., but ft for t = 1, 4, . . . and 1

2 (ft + ft−1) for t = 2, 5, . . .. This makes the transition
between observed quarterly variables smoother.
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as employment and unemployment insurance (UI) claims, as well as sales, revenue and

personal income.

Table 1 shows the selection of sector-level economic indicators and their availability.

For a complete overview of the sectors and which series are available for which sector,

see Appendix B. Regarding the coverage, 12 sectors consist of five underlying variables,

while four sectors consist of four variables and the other four sectors of six. Specifically,

real GDP, employment, continued UI claims and personal income are available for all

sectors and can be obtained from the U.S. Bureau of Economic Analysis, U.S. Bureau

of Labor Statistics and U.S. Department of Labor. Meanwhile, industrial production is

only available for a few goods-producing and service-providing sectors from the Federal

Reserve Board (that is, mining, manufacturing, information and utilities).5 The produc-

tion of utilities includes electric power generation, transmission and distribution (NAICS

2211) and natural gas distribution (NAICS 2212), whereas the IP index assigned to the

information sector is only related to newspaper and book publishers (NAICS 5111). Still,

the publishers industry accounts for roughly 26% of information sector GDP as well as

32% of the total number of employees in the information sector. Furthermore, sales

data is available for five sectors, including manufacturing, retail trade, wholesale trade

and accommodation and food services from the U.S. Census Bureau, and mining from

the U.S. Energy Information Administration. Lastly, revenue data is available for 11

Table 1: Overview of sector-level economic variables

Variables Availability Frequency Starting dates
Publ. delay
(in months)

Seasonal
adjustment

Source

Earliest Latest

Real GDP 20 Q 2005Q1 2005Q1 3 SA BEA
Industrial production 4 M 1919M1 1972M1 1 SA FRB
Employment level 20 M 1939M1 1990M1 0 SA BLS
Continued UI claims 20 M 2003M12 2005M2 0 NSA DOL
Sales 5 M 1981M1 1992M1 1/2 SA/NSA CB/EIA
Revenue 11 Q 2003Q4 2012Q3 2 SA CB
Personal income 20 Q 1998Q1 1998Q1 3 SA BEA

Notes: This table shows the availability (in number of sectors) and details of sector-level economic variables at the two-digit
NAICS level, including their frequencies (quarterly (Q) and monthly (M)), earliest and latest starting dates across the sectors,
publication delays (in months) and seasonal adjustments indicating whether the raw series are available in seasonally-adjusted
(SA) form or only in non-seasonally adjusted (NSA) form. The data sources are the U.S. Bureau of Economic Analaysis
(BEA), the Federal Reserve Board (FRB), the U.S. Bureau of Labor Statistics (BLS), the U.S. Department of Labor (DOL),
the U.S. Energy Information Administration (EIA) and the U.S. Census Bureau (CB).

5There also exists an IP index for logging (NAICS 1133), which belongs to the agriculture, forestry,
fishing and hunting sector. However, this industry is relatively small with only 2.5% of the total number
of employees in the agriculture sector. Hence, we do not include this IP index as economic indicator in
the agriculture sector.
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service-providing sectors from the Quarterly Service Survey of the U.S. Census Bureau.

The various sector-level economic indicators are observed at a monthly or quarterly

frequency. In particular, real GDP, revenue and personal income are observed at a quar-

terly frequency, while industrial production, employment, continued UI claims and sales

are observed at a monthly frequency. The raw series are generally available in seasonally

adjusted form, except for continued UI claims and fuel sales of crude oil and petroleum

products corresponding to the mining sector. In fact, the continued UI claims are only

available at the disaggregate U.S. state level, so they should be summed up again to

constitute the overall sector in the U.S. economy.

The starting dates of the series are quite heterogeneous across indicators and sectors,

ranging from January 1919 for IP in the mining sector to the third quarter of 2012 for

revenue in the real estate, rental and leasing sector (see Appendix B).6 Consequently, for

all sectors, we start the estimation sample from January 1991 onwards, which is the first

date that all sectors have at least one available variable. The remaining missing data

at the beginning of the sample (or anywhere else) is easily dealt with in the estimation

framework using the EM algorithm and the Kalman filter/smoother. The end of the

sample is also prone to missing data due to publication delays (also known as the ragged-

edge), ranging from only a few days for sectoral employment or UI claims to three months

for sectoral real GDP or personal income data. These publication delays should be taken

into account in nowcasting or forecasting exercises (like the one conduced in Section 5.2)

to mimic the real-time data availability.

All series are transformed into yearly growth rates by means of taking the year-on-

year differences of the logarithms of the series as already described in Section 2. This

transformation eliminates possible seasonal components in the raw series such as increases

(decreases) in UI claims for the construction sector during fall and winter (spring and sum-

mer). Moreover, the labor-market related variables are prone to outliers due to sudden

incidental drops or hikes in their level (for example, due to strikes in the transportation

sector or hiring peaks at the U.S. government during the decennial census periods). As

a result, we remove the observations in employment and UI claims growth that are more

6The continued UI claims have different starting dates across states, hence we take the earliest date
that all states have available data for that specific sector. This is done to circumvent a sudden increase
in the number of total claims when a new state would become available. Note that we do not include the
territories (Puerto Rico and the Virgin Islands) and the Federal District (District of Columbia). Also, we
do not include the state Washington as these UI claims are only available from January 2017 onwards.
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than three local standard deviations away from their local median, computed using the

five preceding, current and five succeeding observations (and this procedure is not applied

to the first five and last five observations of the series).

Due to the extreme observations during the covid pandemic, several studies like Maroz

et al. (2021) and Schorfheide and Song (2022) have argued to ignore the observations

from March 2020 to June 2020 in the estimation of the model parameters. Consequently,

we also construct sector-level indices in which these observations are considered missing

during estimation. However, the resulting estimates are often indistinguishable from the

full-sample based ones with correlations ranging from 0.93 to 1.00 (see Appendix C). The

only exception is for the agriculture, forestry, fishing and hunting sector with a correlation

of −0.24, which is due to weak comovement in its underlying series (see Appendix D).

Hence, for the agriculture sector, we ignore the covid observations in the estimation of

the parameters, while for the other sectors we use all data.

4 Tracking sectoral economic conditions

4.1 Heterogeneous sectoral economic conditions

Applying the mixed-frequency dynamic factor in (6)-(7) to the sectoral economic data

described in the previous section, we obtain the sector-level economic conditions indices

(ECIs) from equation (8). Figure 1 presents the monthly ECIs of the four largest non-

governmental U.S. sectors, as measured by their average GDP level over the full sample,

namely (i) manufacturing, (ii) real estate, rental and leasing, (iii) professional, scientific

and technical services and (iv) health care and social assistance. For comparison, we

also include an aggregate ECI that is constructed in a similar fashion as the sector-level

ones.7 Since the ECIs are standardized, they are presented into standard deviation units

from their historical average, meaning that positive (negative) values are associated with

higher-than-average (lower-than-average) growth. The gray shaded areas indicate NBER

7The aggregate ECI is based on the same key aggregate economic variables as used by Aruoba et al.
(2009), namely initial UI claims, employment, industrial production, personal income, manufacturing
and trade sales and GDP (see Appendix B for further details). To be consistent with the sectoral data,
we take the year-on-year difference of the logarithms of the series (except for initial UI claims which are
used in levels), after which they are normalized to have mean zero and variance one for estimation.
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Figure 1: Aggregate and sector-level economic conditions indices of the four largest
non-governmental U.S. sectors with gray shaded NBER recession periods.

recession periods.8

Figure 1 highlights that there is quite some heterogeneity in economic activity across

the four sectors. Manufacturing and professional services are highly cyclical and closely

follow aggregate economic conditions with substantial drops in economic activity during

the NBER recession periods. Meanwhile, health care seems to move more independently

from the overall economy. Moreover, there are differences in the presence and depth of the

downturns. For example, the professional services sector is strongly impacted by both the

dot-com bubble in 2000-2002 and financial crisis in 2007-2008, while the real estate sector

is only severely impacted by the financial crisis and much less so by the dot-com bubble.

All four sectors are strongly and negatively affected by the pandemic, albeit to different

degrees. In particular, the professional services and manufacturing sectors have drops

in economic activity of a roughly similar magnitude as during the financial crisis, while

the health care sector experiences a much more extreme drop in activity. Furthermore,

the manufacturing sector seems to be most in sync with the overall economy, whereas

the real estate and professional services sectors are somewhat more sluggish, especially

around the early 1990s recession and dot-com bubble. At the same time, the real estate

sector seems to be leading the overall economy at the onset of the financial crisis.

8Note that these NBER recession periods are related to the classical business cycle (that is, eco-
nomic activity in (log-)levels), while we study cycles in growth rates (see Harding and Pagan, 2005, for
further details). Hence, the corresponding peaks are not directly comparable, whereas the troughs of the
aggregate ECI should agree with the troughs of the NBER.
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To fully examine the downturns of sectoral economic activity across recessions, Fig-

ure 2 shows the troughs (expressed by the minimum ECIs) across sectors over three

NBER recession periods (± one year to account for possible leads/lags). These three

periods correspond to the dot-com bubble, financial crisis and covid pandemic. Figure 2

shows that there is considerable heterogeneity in the troughs, both within and across

sectors. First, comparing across sectors shows that some sectors are only marginally hit

by specific recession periods, while the same episodes have a much more stringent effect

on other sectors. For instance, the construction, arts and accommodation sectors are

barely hit by the dot-com bubble with drops in economic activity around −0.5 standard

deviations from the long-run mean. Meanwhile, sectors like transportation and man-

agement experience more severe drops of around −2.5 standard deviations. Similarly

for the financial crisis, several sectors such as manufacturing, wholesale trade and retail

trade exhibit downturns going as low as −3 to −4 standard deviations, whereas others

such as educational services and health care are generally unaffected. Still, during the

covid pandemic, almost all sectors display deep drops in economic activity, especially the

service-providing sectors like health care, arts, accommodation and other services sectors,

as is also highlighted by Maroz et al. (2021).

Second, within sectors, there is clear heterogeneity across the different recession pe-

riods. In particular, most sectors as well as the total economy experience the deepest

Figure 2: Troughs in sectoral and aggregate economic conditions indices over the NBER
recession periods (± one year) corresponding to the dot-com bubble, financial crisis and
covid pandemic.
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drops during the covid pandemic, followed by the financial crisis and then the dot-com

bubble. The most striking difference is observed within the service-providing sectors like

health care, arts, accommodation and other services. These sectors experience drops

in economic activity around −7 to −8 standard deviations during the covid pandemic,

whereas they are hardly affected by the other recessions. For most other sectors, the

differences across recession periods are often closer to each other, with the professional

services sector even displaying roughly similar declines in economic activity. Overall, the

sectoral ECIs facilitate an easy way to assess the impact of various recession periods on

the economic activity of different sectors in the economy.

An alternative approach to examining the dynamics of the sectoral economic condi-

tions is by looking at their cycles (see, among others, Harding and Pagan, 2002, 2006;

Stock and Watson, 2014; Chang and Hwang, 2015) To do this, we follow Harding and

Pagan (2006) and construct, for each sector (and the total economy), a binary variable

St for t = 1, . . . , T . These binary variables indicate the cycle phases, that is, whether the

sector (or total economy) is in an expansion phase (St = 1) or contraction phase (St = 0),

which are separated by turning points (that is, peaks and troughs). To identify these

turning points (and consequently St), we use the non-parametric dating algorithm of Bry

and Boschan (1971) for monthly observations and apply it on the sectoral and aggregate

ECIs.

The resulting sectoral and total economy growth cycles are presented in Figure 3,

where we additionally distinguish between lower- or higher-than-average growth (that is,

a negative or positive ECI). Notably, the cycles display clear differences across sectors.

Some sectoral cycles like the ones of manufacturing and wholesale trade are generally

in sync with the overall economy, while others like agriculture and utilities show more

distinctive cyclical behaviour. Unsurprisingly, most sectors display contractions with

lower-than-average growth during the NBER recession periods, although some sectors

like professional services and management are somewhat lagging (as already noted in

Figure 1). On the other hand, the retail trade, construction, finance and real estate

sectors are leading the financial crisis with below-average-growth as early as June 2006.

The timing of the troughs at the end of the contractions during the NBER recessions

are highly concentrated among the sectors, especially after the financial crisis and covid

pandemic, whereas the foregoing peaks are generally more dispersed. This concurs with
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Figure 3: Sectoral and total economy growth cycles based on the Bry and Boschan
(1971) algorithm also differentiating between positive and negative economic condition
indices with red shaded NBER recession periods.

Chang and Hwang (2015), who also find asymmetric concentration of peak and trough

clusters among industries, but then based on industry-level production levels. In sum, we

find clear differences in the timing, duration and synchronization of the sectoral growth

cycles.

4.2 Comovement of sectoral and aggregate economic conditions

As already observed in Figure 1, some sector-level economic conditions are likely to be

closely related to the overall state of the economy. To examine the strength of this co-

movement, we compute the correlations between the sectoral and aggregate ECIs, which

are shown in Figure 4 over the full-sample (January 1991 to September 2021) and pre-

covid sample (January 1991 to December 2019). Two observations stand out. First, it

becomes clear that most sectors are highly correlated with the overall state of the econ-

omy, resulting in an average full-sample correlation of 0.69. The administrative services

sector has the highest full-sample correlation of 0.93, closely followed by the manufac-

turing and retail trade sectors with correlations of 0.91. Still, some sectors move more

independently from aggregate conditions. The agriculture sector has a full-sample corre-

lation close to zero, concurring with Da-Rocha and Restuccia (2006) that the agriculture
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Figure 4: Correlation between sector-level and aggregate economic condition indices
over the full-sample (January 1991 - September 2021) and pre-covid-sample (January
1991 - December 2019).

sector is only weakly correlated with the rest of the economy, while the utilities and public

administration sectors have correlations of 0.32 and 0.41, respectively.

Second, by comparing the correlations across the two samples, we find that for several

sectors the correlation coefficient is largely influenced by the pandemic period, resulting

in a somewhat lower average correlation of 0.59 during the pre-covid sample. In particu-

lar, the mining, educational services, health care and public administration sectors have

substantially lower correlations when the covid pandemic is excluded. In fact, leaving

out the pandemic period for the educational services and health care sectors results in

correlations of −0.01 and −0.23, respectively. This implies that, during the pre-covid

sample, the educational service sector is acyclical and the health care sector even (mod-

erately) counter-cyclical. These differences in correlations between the two samples can

be explained by the fact that the Pearson correlation coefficient is sensitive to extreme

observations like the ones observed in the beginning of the pandemic. To account for

this, we also compute Spearmans’s rank correlations, which are more robust to outliers.

These results are given in Appendix E and are qualitatively similar, but with slightly

weaker correlations. The average rank correlations for the full and pre-covid sample are

0.55 and 0.49, respectively.

To assess whether the comovement is (a)symmetric over the business cycle, Figure 5

distinguishes between correlations computed over recession periods (as indicated by the
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Figure 5: Correlation between sector-level and aggregate economic condition indices
over recession periods (as indicated by the NBER recession dates (± one year)) and
expansion periods.

NBER recession dates (± one year)) and correlations computed over expansion periods.

Clearly, the correlations during expansions are often lower than the ones during reces-

sions, with an average of 0.53 relative to 0.72. This implies that the comovement between

sectoral and aggregate economic activity is generally stronger during recessions than dur-

ing expansions. These asymmetries are most pronounced in sectors that are weakly

related to the overall economy like agriculture, utilities and health care. On the other

hand, sectors that are closely related to aggregate economic conditions like administra-

tive services, manufacturing and retail trade are more symmetric, displaying the highest

correlations during both business cycle phases. Again, we also compute Spearman’s rank

correlations to account for extreme observations. These show roughly similar degrees of

asymmetry, but with somewhat weaker average correlations of 0.44 for expansions and

0.65 for recessions (see Appendix E).

The comovement between sectoral and aggregate economic conditions can also be ex-

amined by the synchronization of their cycles (see, among others, Harding and Pagan,

2006; Chang and Hwang, 2015). Given the specific cycles St constructed in the previous

section, the synchronization measure of Harding and Pagan (2006) can be computed as

the correlation between the sectoral cycle and total economy cycle.9 Figure 6 presents

9An alternative way of measuring the degree of synchronization is by means of the concordance index
of Harding and Pagan (2002), which measures the fraction of time that the cycles are in the same phase.
Yet, the concordance index is just a monotonic transformation of the correlation-based synchronization
measure (Harding and Pagan, 2006), so we only focus on the latter.
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Figure 6: Correlation-based synchronization measures between sectoral and total econ-
omy growth cycles based on the two phases determined by the Bry and Boschan (1971)
algorithm and the four phases also differentiating between positive and negative economic
condition indices.

these correlation-based synchronization measures for the two phases (contraction and ex-

pansion) and the four phases that additionally distinguish between positive and negative

ECIs (just as in Figure 3). There is a large dispersion in the synchronization measures,

with an average two-phase and four-phase correlation of 0.30 and 0.33, respectively. The

sector that is most in sync with the total economy is manufacturing with a two-phase

correlation of 0.76, which is consistent with Figures 1 and 3. This provides evidence that

manufacturing is a dominant sector in the aggregate growth cycle. The manufacturing

sector is followed by wholesale trade and administrative services with correlations of 0.62

and 0.52, respectively. By contrast, the measures of agriculture, educational services,

health care and public administration are close to zero, indicating almost no evidence of

synchronization with the overall economy. The four-phase comovement is often close to

the two-phase one, with only slightly higher correlations. Excluding the covid pandemic

or using rank correlations generally returns similar results (see Appendix E), highlighting

the robustness of the synchronization measures.

4.3 Drivers of sectoral economic conditions

To examine which economic indicators drive the sectoral ECIs, Figure 7 presents the

monthly ECIs (black lines) and their decomposition of underlying series (stacked colored
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bars) for a selection of four sectors. Specifically, we show the sectoral indices of two goods-

producing sectors (that is, mining and construction) and two service-providing sectors

(that is, retail trade and information). The estimates of the other 16 sectoral ECIs are

shown in Appendix F and generally exhibit the same features discussed below.

Figure 7 indicates that the sectoral ECIs are composed of a balanced mix of different

underlying sector-specific economic series. There are clear contributions by both labor-

market related variables (employment, UI claims) and output-related variables (GDP,

industrial production). Unsurprisingly, the goods-producing sectors like mining and con-

struction (and information to some extent) are largely driven by output-related variables,

while a service-providing sector like retail trade is more driven by labor-related variables.

The other economic series (sales, revenue and personal income) play substantial roles as

well for various sectors. For instance, personal income is an important driver of economic

activity in the construction sector, while sales and revenue play prominent roles in the

retail trade and information sectors, respectively.

When comparing the underlying drivers of each sector, three observations stand out.

First, the drivers show heterogeneous behaviour across recession periods, just as in the

total sector-level indices. For example, the information sector exhibits a strong drop in

labor-market related variables during the dot-com bubble, but much less so in output-

related variables, while it is the other way around during the financial crisis. During

the covid pandemic, however, both output-related and labor-market related variables

contribute to poor economic conditions in the information sector. In a similar fashion,

losses in sales play only a minor role in the retail trade sectors during the dot-com bubble

and covid pandemic, but a much larger role during the financial crisis.

Second, the underlying drivers unveil sector-specific periods of heightened and reduced

economic activity. In particular, the mining sector exhibits a two standard deviations de-

cline in economic activity in 2014-2015 largely due to reductions in production, which

could be attributed to the oil price slump during this period (Baffes et al., 2015; Baumeis-

ter and Kilian, 2016). Indeed, the U.S. state-level economic indices of Baumeister et al.

(2022) show a similar kind of drop in economic activity for oil-producing states like North

Dakota and New Mexico. Meanwhile, the information sector exhibited a prolonged period

of high economic activity in the late 1990s across all underlying economic series, which is

largely fueled by the dot-com bubble. After the burst of the dot-come bubble, however,
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Figure 7: Sector-level economic conditions indices (black lines) and their drivers for a
selection of four sectors with the contribution of each data category in the colored bars
and with gray shaded NBER recession periods.
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the information sector dropped drastically in economic activity and, in fact, has never

reached the pre-burst level again (except for the rebound after the initial covid shock).

Third, some drivers are leading or lagging the corresponding sectoral economic con-

ditions during or after a recession. Specifically, during the financial crisis, GDP growth

seems to lag the economic conditions in the information sector, while sales appear to lead

in the mining sector. Moreover, continued UI claims seem to lead the recovery in the

construction and information sector, making the ECI (black line) lie between the stacked

contributions (colored bars) instead of lying on the border.

The well-balanced composition of the ECIs noted before can also be seen in Figure 8,

which shows the factor loading estimates (λ̂) across sectors and variables. In particular,

the loadings have roughly similar absolute magnitudes across the different series, implying

that the various sources of economic activity all seem to contribute to the sectoral ECIs.

In line with the sign restrictions, the loadings are generally consistent with the cyclical-

ity of the corresponding economic variables. Specifically, GDP, IP, employment, sales,

revenue and personal income are all pro-cyclical variables and, indeed, have positive load-

ings, while continued UI claims are counter-cyclical and have negative loadings. There

are a few exceptions of opposite loadings, but these are generally small in magnitude.

The only exception is the larger negative loading of GDP growth for the finance sector,

which could be explained by its weaker comovement of the underlying economic variables

and especially the negative comovement between its employment and GDP growth (see

Appendix D).

Figure 8: Factor loading estimates (λ̂) across sectors and variables
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5 Alternative applications of sectoral ECIs

5.1 Common factors to sectoral economic conditions

Monitoring economic activity at the sector level is the most obvious use of the constructed

indices. However, they can be used for several other purposes as well. A prominent

example is to examine whether the comovement of various economic indicators over the

business cycle is driven by common aggregate shocks or sector-specific shocks (see, among

others, Long and Plosser, 1987; Foerster et al., 2011; Andreou et al., 2019; Graeve and

Schneider, 2023). To answer this question, most existing studies focus solely on output-

related variables like industrial production (IP) data (Long and Plosser, 1987; Foerster

et al., 2011; Graeve and Schneider, 2023), ignoring the service-providing sectors, while

Andreou et al. (2019) additionally include annual GDP growth data of non-IP sectors

(that is, agriculture, construction, service-providing sectors and public administration).

Yet, none of the existing studies, to the best of our knowledge, focus on the comovement

of different types of economic activity at the aggregate and sectoral level in answering

this question.

Given the estimated sectoral ECIs, we therefore revisit the analysis in Foerster et al.

(2011) and Andreou et al. (2019), but then based on a broader measure of economic

activity rather than only output-related variables (that is, IP and GDP growth) and

based on monthly indices for all sectors in the economy.10 Moreover, by having a more

extensive sample, we can examine the effect of the covid pandemic on the explanatory

power of the common factors on aggregate and sectoral economic activity. Following

Foerster et al. (2011), we decompose the 20 monthly sectoral ECIs, collected in xt =

(ECI1,t, . . . , ECI20,t)
′, into a factor model structure with two common factors, that is,

xt = Γgt + ut, (9)

where Γ denotes the 20× 2 factor loading matrix and gt the 2× 1 vector with common

factors, each following a stationary first-order autoregression with the corresponding error

10Both Foerster et al. (2011) and Andreou et al. (2019) focus on quarterly IP data as monthly IP
data is considered too noisy for their analysis. However, our sectoral ECIs are estimated based on
yearly growth rates of the underlying variables, which already smooths out the volatile month-to-month
fluctuations.
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term being i.i.d. standard normally distributed.11 Furthermore, we assume that the

observation error vector ut ∼ i.i.d. N (0,Π) with Π being a 20× 20 diagonal covariance

matrix. Similarly as for the mixed-frequency dynamic factor model, this dynamic factor

model is estimated by means of the EM algorithm with the key differences of having no

mixed-frequencies and no autoregressive dynamics for ut.

Figure 9 shows the smoothed estimates of the common factors in gt, while Figure 10

shows the corresponding factor loading estimates in Γ . The first common factor closely

resembles the aggregate ECI in Figure 1 with a correlation of 0.87, albeit with a less steep

drop during the pandemic. In fact, the first common factor has a correlation of 0.91 with

year-on-year aggregate IP growth, suggesting that the driving component in the economy

is closely tied to total production. Indeed, leaving out the service-providing sectors and

only considering a single common factor in the estimation generates a factor estimate

that is similar to the one obtained from the complete set of sectors, with a correlation

of 0.93 (see Appendix H). Furthermore, Figure 10 shows that the loadings related to

the first common factor are well-balanced with almost all values being between 0.23 and

0.38. The only exceptions are the agriculture and utilities sector with loadings of 0.00

and 0.10, respectively, which is consistent with their low correlation between sectoral and

aggregate economic activity in Figure 4.

Moving to the second common factor, Figure 9 indicates close to perfect negative

comovement with the first common factor before the pandemic period, with a correlation

of −1.00 during the pre-covid sample (January 1991 - December 2019). During the

pandemic period, however, the comovement becomes positive with a correlation of 0.78

over the covid sample (January 2020 - September 2021). In other words, for sectors

with a large loading, the second common factor implies a less severe downturn during

the recession periods of 2001 and 2007-2009 and a more severe downturn during the

pandemic in 2020. Indeed, Figure 10 shows that the service-providing sectors that are

considerably hit by the covid recession period like health care, educational services, arts

and accommodation have the largest loadings. Meanwhile, the sectors that have drops in

economic activity of a roughly similar magnitude during the financial crisis as during the

pandemic like the construction, manufacturing, wholesale trade and professional services

11We also experiment with three and four common factors, but these generally lead to qualitatively
similar results in terms of how much of the total variation can be explained by the common factors.
These results are given in Appendix G.
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Figure 9: Smoothed estimates of common factors (gt) with gray shaded NBER recession
periods.

Figure 10: Factor loading estimates across sectors of common factors (Γ ).

sectors have much smaller loadings. This implies that the second common factor serves

as a correction factor for the service-providing sectors that are more severely hit by the

covid pandemic and less severely by the financial crisis than accounted for by the first

common factor only.

As a robustness check, we also estimate the common factors and loadings using data up

to December 2019, excluding the covid pandemic. These results are given in Appendix H

and show that the first common factor remains similar to its full-sample counterpart with

a correlation of 0.98. However, the structure and dynamics of the second common factor

completely changes, shifting away from the hardest hit sectors by the pandemic towards

the hardest hit sectors by the financial crisis like construction, manufacturing, finance

and real estate. Therefore, we consider the full sample and pre-covid sample separately

in the subsequent analysis.

26



To investigate the explanatory power of the estimated factors on aggregate and sec-

toral economic activity, we follow Andreou et al. (2019) and regress the aggregate and

sectoral ECIs on (i) the first common factor, (ii) the second common factor and (iii)

both common factors. Table 2 displays the adjusted R2 of these regressions based on

factor estimates over the full sample and pre-covid sample. We first focus on the full-

sample results. Panel A presents the results for the aggregate ECI and aggregate IP

growth, where the former represents a broad measure of economic activity and the latter

only production-related activity. Despite that neither are used in the estimation of the

factors, the first common factor explains about 76% of the full-sample variation in the

aggregate ECI and 77% of the full-sample variation in aggregate IP. Adding the second

common factor to the first one leads to increments of the adjusted R2 of 14% for ag-

gregate ECI and 3% for aggregate IP. In other words, the second common factor only

adds explanatory power for the broad economic measure that also includes the non-IP

sectors, while it only marginally adds explanatory power for total IP. This also aligns

with the loadings in Figure 10. Overall, this implies that the variation in aggregate eco-

nomic activity is largely driven by a small number of common factors among sectoral

economic activity. Moreover, Panel B shows that the first common factor explains 91%

of the variability in the manufacturing sector as well as most of the fluctuations in the

service-providing sectors that are closely related to IP like wholesale trade (85%), retail

trade (76%), transportation and warehousing (72%) and administrative and waste man-

agement services (86%). This suggests that the first common factor among all sectors can

be interpreted as an IP-related factor, which corroborates with the findings in Andreou

et al. (2019).

The second common factor only seems to explain part of the full-sample variation

in the sectors that are part of or have a close link to IP like manufacturing (42%),

construction (40%), wholesale trade (36%) and professional services (33%). However,

for these sectors, regressing the sectoral ECIs on both common factors shows that the

second common factor does not add much on top of the first factor in terms of explanatory

power, indicating that these sectors are solely driven by the first common factor. On the

other hand, for sectors with variation that cannot be explained by the second common

factor alone like educational services (7%) and accommodation and food services (1%),

it becomes clear that jointly considering both common factors has a huge impact on the
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Table 2: Adjusted R2’s of regressing sector-level and aggregate economic conditions
indices on smoothed common factor estimates.

Full sample
(1991M1 - 2021M9)

Pre-covid sample
(1991M1 - 2019M12)

R̄2(1) R̄2(2) R̄2(1 + 2) R̄2(1) R̄2(2) R̄2(1 + 2)

Panel A: Total economy

Aggregate ECI 0.76 0.21 0.90 0.95 0.03 0.95
Aggregate IP 0.77 0.33 0.80 0.78 0.01 0.86

Panel B: Sectors

Agriculture, forestry, fishing, and hunting 0.00 0.00 0.00 0.00 0.02 0.02
Mining 0.32 0.03 0.50 0.22 0.03 0.28
Utilities 0.10 0.04 0.11 0.06 0.03 0.10
Construction 0.78 0.40 0.79 0.82 0.34 1.00
Manufacturing 0.91 0.42 0.93 0.90 0.02 1.00
Wholesale trade 0.85 0.36 0.89 0.81 0.00 0.86
Retail trade 0.76 0.24 0.86 0.88 0.08 0.89
Transportation and warehousing 0.72 0.18 0.88 0.73 0.00 0.74
Information 0.69 0.25 0.76 0.60 0.04 0.60
Finance and insurance 0.34 0.07 0.44 0.30 0.21 0.43
Real estate, rental and leasing 0.65 0.12 0.86 0.76 0.17 0.83
Professional, scientific, and technical services 0.69 0.33 0.71 0.54 0.01 0.55
Management of companies and enterprises 0.67 0.20 0.77 0.59 0.01 0.59
Administrative and waste management services 0.86 0.30 0.95 0.89 0.01 0.90
Educational services 0.07 0.07 0.69 0.00 0.07 0.07
Health care and social assistance 0.04 0.15 0.80 0.08 0.00 0.08
Arts, entertainment, and recreation 0.24 0.02 0.99 0.54 0.00 0.54
Accommodation and food services 0.28 0.01 0.95 0.77 0.10 0.79
Other services (except public administration) 0.38 0.00 0.91 0.59 0.15 0.65
Public administration 0.03 0.08 0.45 0.00 0.02 0.02

Notes: This table shows the adjusted R2’s (R̄2’s) of regressing the aggregate ECI and aggregate IP (Panel A) and sectoral ECIs (Panel B) on the
estimates of the first common factor (R̄2(1)), second common factor (R̄2(2)) or both (R̄2(1 + 2)). The results are shown for full-sample (January
1991 - September 2021) based estimated factors and regressions and pre-covid sample (January 1991 - December 2019) ones. The factors are
estimated from the 20 sectoral ECIs using the dynamic factor model given in equation (9).

explanatory power. For instance, for the arts, entertainment and recreation sector, the

first and second common factor, on their own, explain about 24% and 2%, respectively,

while jointly they explain about 99% of its variation in economic activity. This confirms

the correction effect that the second common factor has on top of the first one for sectors

that are hit hardest during the pandemic, but much less so during the financial crisis.

Lastly, to assess the effect of the pandemic on the explanatory power, we also focus

on the pre-covid sample (that is, the results where the factors and regressions are esti-

mated with pre-covid sample data only). Compared to the full-sample, the first common

factor explains considerably more of the variation in total economic activity (+19%),

while it explains roughly the same for aggregate IP (−1%) and manufacturing (−1%).

Furthermore, for most sectors (except construction and manufacturing), the two com-

mon factors together explain less variation during the pre-covid sample than during the

full sample, especially for the service-providing sectors that are hit hardest during the

pandemic. On its own, the second common factor only seems to explain variation of

the construction (34%), finance and insurance (21%) and real estate, rental and leasing
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(17%) sectors, which are sectors that are closely tied to the origins of the financial crisis

of 2007-2008. In other words, the second common factor estimated up till December 2019

can be characterized as a factor capturing the real estate and financial cycle (see also

Appendix H). Overall, the structure and explanatory power of the second common factor

has changed the most by the covid pandemic, particularly for the hardest hit sectors,

while the explanatory power of the first common factor remained roughly similar.

5.2 Nowcasting sectoral GDP growth

As a by-product of the construction of the sectoral ECIs from the mixed frequency dy-

namic factor models, we obtain estimates of the latest underling sector-level economic

indicators from the Kalman smoother. These estimates provide an alternative approach

to assessing the current economic state of each sector (Nunes, 2005) and, consequently,

to validate the corresponding sectoral ECIs. To examine the accuracy of these estimates,

we conduct an expanding-window nowcasting exercise for sector-level year-on-year GDP

growth, where at each point in time we take into account the publication delays of the

series (see Table 1) and impose this ragged edge structure onto the data.12 In particular,

sector-level GDP is released with a considerable delay of three months, while most other

sectoral economic series are released much earlier. This indicates that there is much to

gain in terms of using earlier released sector-level information for nowcasting.

Following Bańbura and Modugno (2014), we construct a sequence of nowcasts for each

target quarter, ranging from the first month of the previous quarter (that is, Q(-1)M1)

to the second month of the subsequent quarter (that is, Q(+1)M2), just before the first

official figures are released. Since the sector-level GDP series are only available since

the first quarter of 2005, the evaluation period runs from the first quarter of 2010 to the

second quarter of 2021. This means that the first estimation window is from January 1991

to October 2009 to produce Q(-1)M1 for 2010Q1 with at least close to four years of GDP

growth series in the sample. After the initial estimation window, the sample is expanded

by one month and the sector-specific mixed-frequency dynamic factor models are re-

estimated again. This process is repeated to produce all the nowcasts. As a benchmark,

we compute nowcasts from a univariate first-order autoregressive (AR) model for sector-

12Note that this exercise is pseudo real-time since there is generally no vintage data for the sector-level
economic series.
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level GDP growth, also taking into account the publication delays.

Table 3 shows the relative root mean squared forecast errors (RMSFE) of the sequence

of sector-level GDP nowcasts for the mixed-frequency dynamic factor model compared

to the AR(1) benchmark. Panel A shows the nowcasting results for the complete out-

of-sample period that includes the covid pandemic, while Panel B excludes the covid

pandemic and displays results up to 2019Q4. Three observations stand out from Ta-

ble 3. First, the nowcasts from the mixed-frequency dynamic factor model are generally

(significantly) more accurate than the ones of the AR(1) benchmark, as indicated by

the large number of relative RMSFEs that are below one. In fact, this goes as low as

0.20 for Q(+1)M2 in the arts, entertainment, and recreation sector (Panel A). Moreover,

this observation holds for both including (Panel A) and excluding (Panel B) the covid

pandemic. For the complete out-of-sample period (Panel A), the relative average per-

formance across sequence of nowcasts and sectors is 0.78, meaning that on average the

model-based nowcasts are 22% more accurate than the benchmark. Excluding the covid

pandemic (Panel B) gives a roughly similar average of 0.76. For completeness, we also

show the relative accuracy of the nowcasts made for the total economy, which are also

well below one in both Panel A and B with a relative average RMSFE of 0.58 and 0.57,

respectively.13

Second, the relative RMFSEs within each construction quarter Q(-1), Q(0) and Q(+1)

are generally close to each other. This implies that the economic data releases within

a quarter do not considerably change the relative performance of the models compared

to the benchmark, with some exceptions like Q(0) for the health care sector in Panel A.

Yet, across blocks, there can be substantial differences. For instance, the manufacturing

sector in Panel A has a relative RMSFE around 0.70 in Q(-1), while it is around 0.45 in

Q(0) and around 0.35 in Q(+1). This can be explained by the fact that the GDP figures

of the previous quarter are released every third month in the quarter, which updates

both the benchmark and model-based nowcasts. The largest relative improvements are

often observed from Q(0) to Q(+1), meaning that whenever the target quarter has past,

enough information has become available for the mixed-frequency dynamic factor model

to provide relatively better nowcasts than before.

Third, when comparing Panel A with Panel B, it become clear that for some sectors

13Note that the nowcasts for Q(+1) are not shown for the total economy as the publication delay is
only one month for the total GDP figures.
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Table 3: Relative nowcasting performance of sector-level GDP growth based on a mixed-
frequency dynamic factor model compared to an AR(1) benchmark.

Q(-1) Q(0) Q(+1) Average

M1 M2 M3 M1 M2 M3 M1 M2

Panel A: Evaluation period including covid pandemic (2010Q1 - 2021Q2)

Agriculture, forestry, fishing, and hunting 0.89∗∗ 0.89∗∗ 0.96 0.95 0.96 1.04∗∗ 0.83∗∗ 0.83∗∗ 0.91
Mining 0.80∗∗∗ 0.80∗∗∗ 0.81∗∗∗ 0.97 0.98 1.04 0.65∗∗∗ 0.65∗∗∗ 0.83
Utilities 0.84∗ 0.84∗ 0.84∗ 0.96 0.98 1.01 0.79 0.86 0.88
Construction 0.80 0.77∗ 0.81∗ 0.75 0.74 0.71∗ 0.54∗∗ 0.55∗∗ 0.72
Manufacturing 0.73∗∗ 0.68∗∗ 0.73∗∗ 0.48∗∗ 0.43∗∗ 0.47∗∗ 0.35∗∗ 0.35∗∗ 0.55
Wholesale trade 0.83 0.83 0.84 1.07 1.10 1.10 0.77 0.79 0.90
Retail trade 0.94 0.94 0.98 0.83 0.84 0.73∗ 0.60∗ 0.62∗ 0.82
Transportation and warehousing 0.84∗ 0.79∗∗ 0.87∗∗∗ 0.44∗∗ 0.33∗∗ 0.38∗ 0.33∗∗ 0.30∗∗ 0.55
Information 0.91 0.98 0.96 1.13 1.22 1.20 0.92 0.94 1.02
Finance and insurance 0.73∗∗ 0.73∗ 0.73∗ 0.72 0.74 0.75 0.59∗∗ 0.62∗ 0.70
Real estate, rental and leasing 0.90 0.89 0.88 1.07 1.12 1.17 0.82 0.86 0.95
Professional, scientific, and technical services 0.80 0.75∗ 0.78∗ 0.77 0.72 0.73 0.53∗∗ 0.51∗∗ 0.71
Management of companies and enterprises 1.18 1.16 1.16 1.50∗ 1.47 1.54 1.21 1.18 1.28
Administrative and waste management services 0.83 0.79 0.78∗ 0.63∗ 0.57∗∗ 0.54∗∗ 0.41∗∗ 0.36∗∗ 0.63
Educational services 0.74∗∗∗ 0.74∗∗ 0.73∗∗∗ 0.49∗ 0.49∗ 0.43∗ 0.32∗∗ 0.33∗∗ 0.56
Health care and social assistance 1.06 1.19 1.19 1.01 0.85 0.59∗ 0.62∗ 0.61∗ 0.90
Arts, entertainment, and recreation 0.92 0.84∗ 0.92∗ 0.40∗∗ 0.35∗∗ 0.23∗ 0.27∗ 0.20∗ 0.52
Accommodation and food services 0.89∗∗ 1.32 0.94 0.46∗ 0.28∗∗ 0.27∗∗ 0.31∗ 0.32∗ 0.60
Other services (except public administration) 1.11 1.08 1.02 0.89 0.77 0.60∗ 0.50∗∗ 0.57∗ 0.83
Public administration 0.83 0.83 1.01 0.78∗ 0.69∗∗ 0.59∗ 0.53∗∗∗ 0.50∗∗∗ 0.73

Total economy 0.80∗∗ 0.76∗∗∗ 0.73∗∗∗ 0.29∗ 0.38∗ 0.34∗ - - 0.58

Panel B: Evaluation period excluding covid pandemic (2010Q1 - 2019Q4)

Agriculture, forestry, fishing, and hunting 0.90∗∗ 0.90∗ 0.94 0.96 0.97 1.07∗∗ 0.76∗∗ 0.76∗∗ 0.90
Mining 0.80∗∗∗ 0.80∗∗∗ 0.80∗∗∗ 0.94 0.95 1.01 0.63∗∗ 0.63∗∗ 0.81
Utilities 0.84∗ 0.84∗ 0.84∗ 0.96 0.98 1.00 0.78 0.86 0.88
Construction 0.70 0.67∗ 0.75 0.92 0.93 0.95 0.69 0.70 0.77
Manufacturing 0.58∗∗ 0.53∗∗ 0.54∗ 0.62 0.60 0.86 0.48∗ 0.48∗ 0.57
Wholesale trade 0.49∗∗ 0.44∗∗ 0.48∗∗ 0.60∗ 0.60∗ 0.87 0.54∗∗ 0.54∗∗ 0.54
Retail trade 1.09 1.07 1.07 1.26∗∗∗ 1.27∗∗∗ 1.18∗∗∗ 0.96 0.96 1.10
Transportation and warehousing 0.77∗∗ 0.70∗∗∗ 0.74∗∗ 0.81∗∗ 0.77∗∗ 0.88∗ 0.63∗∗ 0.63∗∗∗ 0.74
Information 0.73∗∗ 0.72∗∗ 0.74∗∗ 0.86∗ 0.86∗ 0.98 0.71∗∗ 0.77∗ 0.78
Finance and insurance 0.73∗ 0.73∗ 0.73∗ 0.70 0.71 0.73 0.57∗∗ 0.59∗ 0.69
Real estate, rental and leasing 0.64∗∗ 0.64∗∗ 0.60∗∗ 0.75 0.77 0.84 0.57∗ 0.57∗ 0.66
Professional, scientific, and technical services 0.55∗∗ 0.47∗∗∗ 0.54∗∗ 0.63∗∗ 0.54∗∗ 0.67∗∗ 0.42∗∗ 0.39∗∗∗ 0.52
Management of companies and enterprises 0.93∗ 0.91∗∗ 0.98 1.08 0.99 1.02 0.84∗ 0.85∗ 0.95
Administrative and waste management services 0.49∗∗ 0.45∗∗ 0.45∗∗ 0.51∗ 0.49∗∗ 0.63∗ 0.38∗∗ 0.36∗∗ 0.46
Educational services 0.71∗∗ 0.76∗∗ 0.78∗∗∗ 0.98 1.01 1.00 0.65∗∗∗ 0.64∗∗∗ 0.80
Health care and social assistance 0.72∗∗∗ 0.72∗∗∗ 0.73∗∗ 0.90 0.87 0.88∗ 0.67∗∗∗ 0.62∗∗∗ 0.75
Arts, entertainment, and recreation 0.74∗∗∗ 0.74∗∗∗ 0.84∗∗∗ 0.87∗∗ 0.87∗∗ 0.93 0.80∗∗∗ 0.80∗∗∗ 0.82
Accommodation and food services 0.60∗∗ 0.59∗∗∗ 0.55∗∗ 0.71∗∗ 0.70∗∗ 0.79∗∗ 0.47∗∗ 0.46∗∗ 0.60
Other services (except public administration) 0.74∗∗∗ 0.72∗∗∗ 0.69∗∗∗ 0.86∗∗ 0.83∗∗ 0.87∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.71
Public administration 1.15∗ 1.17∗ 0.94 1.05 1.01 1.11 0.76∗∗ 0.78∗∗ 1.00

Total economy 0.53∗∗ 0.47∗∗ 0.44∗∗ 0.83∗ 0.76∗∗ 0.80∗ - - 0.57

Notes: This table shows the relative root mean squared forecast errors (RMFSE) of nowcasting sector-level year-to-year GDP growth based on a mixed-
frequency dynamic factor model (DFM) from 2010Q1 to 2021Q2 compared to an AR(1) benchmark. Panel A shows the results including the covid
pandemic, while Panel B excludes it. For each target quarter, the nowcasts construction dates range from the first month of the previous quarter (that
is, Q(-1)M1) to the second month of the subsequent quarter (that is, Q(+1)M2). The final column shows the relative average RMSFEs across projections
based on the mixed-frequency DFM compared to the ones of the AR benchmark. A value smaller (larger) than one means that the mixed-frequency
DFM produces more (less) accurate nowcasts than the AR benchmark. The asterisks ∗, ∗∗ and ∗ ∗ ∗ indicate significance at the 10%, 5% and 1% level,
respectively, based on the modified Diebold-Mariano test of Harvey et al. (1997).

the relative performance is largely influenced by the covid pandemic. Specifically, for some

sectors like retail trade and public administration, the relative performance deteriorates

when excluding the covid pandemic, meaning that the model-based nowcasts are relatively

more accurate compared to the benchmark during the covid pandemic than during the

pre-covid period. For example, based on the full out-of-sample period (Panel A), the

relative RMSFEs for the retail trade sector range from 0.60 to 0.94 with an average
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of 0.82, while in the pre-covid period (Panel B) they are between 0.96 and 1.27 with an

average of 1.10. On the other hand, for some sectors like wholesale trade and management,

it is the other way around with a relative performance that is better in case the covid

pandemic is excluded. There are also sectors like mining and finance that have relative

performance that is robust to including or excluding the covid pandemic, indicating that

their nowcasts are not largely influenced by the pandemic. For a more extensive treatment

and examination of macroeconomic modelling and forecasting during the covid pandemic,

see, among others, Ng (2021), Schorfheide and Song (2022) and Carriero et al. (2022).

Next, we examine the evolution of the relative nowcasting accuracy. To this end,

Figure 11 shows the cumulative sum of squared forecast error difference plots (Welch

and Goyal, 2008; Pettenuzzo and Timmermann, 2017) between the several projected

nowcasts from the mixed-frequency dynamic factor model and the ones of the benchmark

for the four largest non-governmental U.S. sectors. Negative (positive) values imply

that the mixed-frequency dynamic factor model generates more (less) accurate nowcasts

than the benchmark. Figure 11 indicates that the differences are generally below zero

and decreasing, especially for the manufacturing and professional services sectors. This

means that over time the model-based nowcasts become more accurate relative to the

benchmark. For the forecasts and nowcasts made in Q(-1)M2 and Q(0)M1, the model-

based performance deteriorates compared to the benchmark during the covid pandemic,

particularly for the health care sector. Meanwhile, for the nowcasts and backcasts made

in Q(0)M3 and Q(+1)M2, the relative model-based performance improves during the

pandemic, except for the real estate sector. Overall, the model-based nowcast gains

are consistent throughout the out-of-sample period and especially pronounced for the

nowcasts and backcasts during the covid pandemic.

Lastly, we demonstrate the potential of the sector-level GDP nowcasts (and conse-

quently of the sectoral ECIs) during a period of economic turmoil like the onset of the

covid pandemic. Specifically, Figure 12 shows the GDP nowcasts made for the second

quarter of 2020 (that is, the first complete quarter in the pandemic) across the different

construction dates and sectors, as well as the realized GDP growth rates. Clearly, the

nowcasts made in the first quarter of 2020 (that is, in Q(-1)) do not convey any infor-

mation yet on the pandemic, resulting in 2020Q2 GDP nowcasts values that are often

positive and far off from the realized values. However, when entering the pandemic in

32



Figure 11: Cumulative sum of squared forecast error difference plots between the now-
casts from the mixed-frequency dynamic factor model and the ones of the AR(1) bench-
mark for the four largest non-governmental U.S. sectors with gray shaded NBER recession
periods.

the second quarter of 2020, more information becomes available like drops in employment

and production levels and increases in the number of continued UI claims, which pushes

the GDP nowcasts downward. The sectors that are severely hit by the pandemic like arts

and accommodation (as indicated by Figure 2) have the deepest drops in both nowcasted

and observed GDP growth rates. In fact, the nowcasts constructed from Q(0)M1 onwards

are generally close to the corresponding realized values. This indicates that, once enough

information has become available, the mixed-frequency dynamic factor model provides

an accurate signal of the severity of the drop in output. Such early signals can be used

by decision makers in both the private and public sector to anticipate current and near-

future economic conditions. Overall, this illustrates the accuracy and usefulness of the

sector-level GDP nowcasts that are in turn used as inputs for the sectoral ECIs to more

broadly track the economic state of each sector.
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Figure 12: Nowcasts and realized values of 2020Q2 sector-level year-on-year GDP
growth rates across sequence of construction dates and sectors.

6 Conclusion

This paper constructs a novel set of 20 monthly U.S. state-level economic conditions

indices at the two-digit North American Industry Classification System (NAICS) level

from January 1991 to September 2021. In particular, these indices are composed of

a small but diverse set of sectoral economic indicators and are estimated using mixed-

frequency dynamic factor models. The resulting indices show substantial heterogeneity in

dynamics across sectors, particularly during recessions periods, emphasizing the relevance

of sectoral disaggregation. Moreover, the indices are generally driven by balanced mix of

the underlying indicators, meaning that the various sources of economic activity all seem

to contribute to describing sectoral economic conditions. This highlights that sectoral

conditions are not just described by one type of economic activity only, but by the

comovement of different indicators of sectoral activity.

Given the estimated indices, it becomes straightforward to (re)examine questions con-

cerning the dynamics of sectoral economic activity. Specifically, we revisit the analyses in

Foerster et al. (2011) and Andreou et al. (2019) by examining whether the common fac-

tors that drive sectoral economic conditions are able to explain the variation in aggregate

conditions. Confirming their results, we find that the first common factor drives aggre-

gate economic activity and is closely related to production-related sectors. At the same

time, we complement their results by showing that the second common factor serves as a
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correction factor that handles the differing impacts of the financial crisis and especially

covid pandemic on service-providing sectors. Alternatively, the indices could be used to

examine spillovers between sectors (Li and Martin, 2019; Guisinger et al., 2021; Brunner

and Hipp, 2023) or regime switches within and across sectors (Cooper, 1998; Bidarkota,

1999; Fok et al., 2005; Korenok et al., 2009), but then based on a more complete measure

of sectoral activity available for all sectors in the economy (including the service-providing

ones). These applications are left for further research.

Lastly, the estimated indices are based on smoothed estimates of the underlying eco-

nomic indicators when no observed values are available yet due to publication delays.

To examine the accuracy of these estimates and consequently of the indices, we conduct

a nowcasting exercise of sector-level GDP growth, which are typically published with a

three-month delay. For most sectors, the mixed-frequency dynamic factor model outper-

forms the benchmark, with an average improvement of 22% in terms of root mean squared

error. These improvements are most pronounced during the covid pandemic, highlighting

the usefulness of these nowcasts as inputs for the sector-level economic conditions indices

during times of economic turmoil.
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A Estimation of mixed-frequency dynamic factor model

This section discusses the details of the expectation-maximization (EM) algorithm in the

estimation of the mixed-frequency dynamic factor model (DFM). For each sector i, the

measurement equation of the mixed-frequency DFM in (6) is given by

yM
t

yQ
t


︸ ︷︷ ︸

yt

=

λM 0 IK 0

0 λQ 0 IL


︸ ︷︷ ︸

Λ


ft

ct

εMt

εQt


︸ ︷︷ ︸

zt

+

eM
t

eQ
t


︸ ︷︷ ︸

et

,

while the state equation in (7) is given by

xt

εt


︸ ︷︷ ︸
zt

=

Bt 0

0 Ψ


︸ ︷︷ ︸

Φt

xt−1

εt−1


︸ ︷︷ ︸
zt−1

+

g 0

0 IN


︸ ︷︷ ︸

G

 ηt

νi,t


︸ ︷︷ ︸

υt

,

with xt = (ft, ct)
′, εt = (εMt

′
, εQt

′
)′, g = (1, 1

3
)′ and

Bt =

 ϕ 0

1
3
ϕ ξt

 . (A.1)

Hence, the complete model in state-space form, including the distributional assumptions

on the error terms, can be compactly written as

yt = Λzt + et, et ∼ N (0, τIN), (A.2)

zt = Φtzt−1 +Gυt, υt ∼ N (0,Ω), (A.3)

for t = 1, . . . , T , where, following Bańbura and Modugno (2014), τ is pre-fixed at a very

small value (that is, 10−4).

A.1 Expectation-maximization algorithm

Given the model in (A.2)-(A.3), we need to estimate the unknown parameters in Θ =

{Λ,Γ ,Φ,Ω} and the latent states in Z = (z1, . . . ,zT )
′ with the expectation-maxization

1



(EM) algorithm of Dempster et al. (1977). The idea of the EM algorithm is to focus on

the complete data log-likelihood of Z and Y = (y1, . . . ,yT )
′, denoted as ℓ(Z,Y ;Θ). As

not all elements in Y are observed, we follow Bańbura and Modugno (2014) and Sp̊anberg

(2022) and integrate out the missing data from the likelihood function. we define Wt as

an N -dimensional diagonal matrix with the n-th diagonal element wn,t being an indicator

function that equals one if yn,t is observed and zero otherwise for all n = 1, . . . , N and

t = 1, . . . , T . Moreover, let P =
∑T

t=1

∑N
n=1wn,t denote the total number of available

observations. Then, the complete data log-likelihood of the model in (A.2)-(A.3) can be

written as

ℓ(Z,Y ;Θ) =− 1

2
log |V0| −

1

2
(z0 − µ0)

′V −1
0 (z0 − µ0)

− P

2
log τ − 1

2τ

T∑
t=1

(yt −Λzt)
′Wt(yt −Λzt)

− T

2
log |GΩG′| − 1

2

T∑
t=1

(zt −Φzt−1)
′(GΩG′)−1(zt −Φzt−1),

where µ0 and V0 follow from the initial conditions that are specified as z0 ∼ N (µ0,V0)

with V0 being a diagonal matrix. The expectation step (E-step) is conducted by taking

the expectation of the complete data log-likelihood conditional on the observed data Y

based on the j-th iteration of the parameter estimates, denoted as Θ(j), that is,

L(Θ;Θ(j)) = E(j)

(
ℓ(Z,Y ;Θ)

∣∣∣Y ), (A.4)

which can be computed by a pass of the Kalman filter and smoother (see, for example,

Durbin and Koopman, 2012, for a textbook treatment), where E(j)(·) indicates that

the expectation is taken conditional on Θ(j). Next, the maximization step (M-step) is

conducted by maximizing the expected complete data log-likelihood with respect to Θ,

that is,

Θ(j+1) = argmax
Θ

L(Θ;Θ(j)). (A.5)

Fortunately, there exist analytic solutions to the maximization problem in (A.5) for the

unknown parameters in Θ, making the algorithm computationally fast, even in high

dimensions. These are derived in Section A.2. Finally, the E-step in (A.4) and M-step in

2



(A.5) are iterated until convergence, where Dempster et al. (1977) show that under some

regularity conditions the algorithm converges to a local optimum.

To determine the convergence, we follow the stopping rule of Doz et al. (2012), which

states that the algorithm is stopped at the first iteration j < J that satisfies∣∣ℓ(Y ;Θ(j))− ℓ(Y ;Θ(j−1))
∣∣

1
2

∣∣ℓ(Y ;Θ(j)) + ℓ(Y ;Θ(j−1))
∣∣ < ϵ,

where J is the maximum number of iterations set equal to 5,000, ϵ is the pre-specified

tolerance level set equal to 10−8 and ℓ(Y ;Θ(j)) is the prediction error log-likelihood of

Y evaluated at the j-th parameter iteration. Moreover, the EM algorithm is initialized

with the estimates from the two-step approach of Doz et al. (2011) based on principal

component analysis and ordinary least squares.

A.2 M-step derivations

In order to derive the M-step for the parameter of interest in Θ, we need to take the

partial derivative of L(Θ;Θ(j)) with respect to that parameter and set it equal to zero.

The M-step of the diagonal elements in Ψ that are part of Φ can be derived by taking

the partial derivative with respect to ψn for each n = 1, . . . , N , that is,

∂

∂ψn

L(Θ;Θ(j)) =
∂

∂ψn

(
− 1

2

T∑
t=1

E(j)

[
(zt −Φzt−1)

′Ω−1(zt −Φzt−1)
∣∣∣Y ])

=
∂

∂ψn

(
− 1

2σ2
n

T∑
t=1

E(j)

[
(εn,t − ψnεn,t−1)

2
∣∣∣Y ])

=
1

σ2
n

T∑
t=1

E(j)

[
εn,t−1(εn,t − ψnεn,t−1)

∣∣Y ],
where εn,t denotes the n-th element of εt and σ

2
n the n-th diagonal element of Σ. Note

that we discard the superscript M or Q as the expressions are similar across frequencies.

Setting the partial derivative equal to zero and rearranging gives

ψ(j+1)
n =

(
T∑
t=1

E(j)

[
εn,t−1εn,t

∣∣Y ])( T∑
t=1

E(j)

[
ε2n,t−1

∣∣Y ])−1

, (A.6)

for n = 1, . . . , N , where E(j)

[
εn,t−1εn,t

∣∣Y ] and E(j)

[
ε2n,t−1

∣∣Y ] can be obtained by the
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Kalman smoother.

Moving to the diagonal elements in Σ, denoted as σ2
n, that are part of Ω, we get

∂

∂σ2
n

L(Θ;Θ(j)) =
∂

∂σ2
n

(
− T

2
log |GΩG′|

− 1

2

T∑
t=1

Ej

[
(zt −Φzt−1)

′(GΩG′)−1(zt −Φzt−1)
∣∣∣Y ])

=
∂

∂σ2
n

(
− T

2
log σ2

n −
1

2σ2
n

T∑
t=1

E(j)

[
(εn,t − ψn,iεn,t−1)

2
∣∣∣Yi

])

= − T

2σ2
n

+
1

2σ4
n

(
T∑
t=1

E(j)

[
ε2n,t − 2ψnεn,tεn,t−1 + ψ2

nε
2
n,t−1

∣∣Y ]).
for each n = 1, . . . , N . Setting equal to zero and rearranging gives

σ2
n
(j+1)

=
1

T

(
T∑
t=1

E(j)

[
ε2n,t
∣∣Y ]− 2ψnE(j)

[
εn,tεn,t−1

∣∣Y ]+ ψ2
nE(j)

[
ε2n,t−1

∣∣Y ])

=
1

T

(
T∑
t=1

E(j)

[
ε2n,t
∣∣Y ]− ψ(j+1)

n E(j)

[
εn,tεn,t−1

∣∣Y ]),
for each n = 1, . . . , N , where the second equality follows from setting ψn equal to the

new iteration value ψ
(j+1)
n derived in equation (A.6) and the conditional expectations are

again obtained by the Kalman smoother.

Turning to the factor loadings corresponding to the monthly series λMk in Λ for k =

1, . . . , K, we get

∂

∂λMk
L(Θ;Θ(j)) =

∂

∂λMk

(
− 1

2τ

T∑
t=1

E(j)

[
(yt −Λzt)

′Wt(yt −Λzt)
∣∣∣Y ])

=
∂

∂λMk

(
− 1

2τ

T∑
t=1

wM
k,tE(j)

[
(yMk,t − λMk ft − εMk,t)

2
∣∣∣Y ])

=
1

τ

(
T∑
t=1

wM
k,tE(j)

[
ft(y

M
k,t − λMk ft − εMk,t)

∣∣Y ]),
where wM

k,t denotes the availability indicator of the k-th monthly series. Setting equal to
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zero and rearranging gives

λMk
(j+1)

=

∑T
t=1w

M
k,t

(
E(j)

[
ft
∣∣Y ]yMk,t − E(j)

[
ftε

M
k,t

∣∣Y ])∑T
t=1w

M
k,tE(j)

[
f 2
t

∣∣Y ] , (A.7)

for k = 1, . . . , K, where the conditional expectations can be obtained by the Kalman

smoother. Similarly for the factor loadings corresponding to the quarterly series λQl , we

obtain

λQl
(j+1)

=

∑T
t=1w

Q
l,t

(
E(j)

[
ct
∣∣Y ]yQl,t − E(j)

[
ctε

Q
l,t

∣∣Y ])∑T
t=1w

Q
l,tE(j)

[
c2t
∣∣Y ] , (A.8)

for l = 1, . . . , L, where wQ
l,t denotes the availability indicators of the l-th quarterly series

and the conditional expectations are obtained by the Kalman smoother.

However, Opschoor and van Dijk (2023) show that the framework of Bańbura and

Modugno (2014), in which the idiosyncratic components are included in the state vector,

leads to extremely slow EM convergence in estimating λM and λQ with the conventional

M-steps in (A.7) and (A.8). To overcome this issue, Opschoor and van Dijk (2023)

advocate to use the overrelaxed adaptive EM (AEM) algorithm of Salakhutdinov and

Roweis (2003) for estimating the factor loadings, which they show speeds up convergence

and leads to more accurate estimates of factor loadings and latent factors. The new

M-step of λMk and λQl under this adaptive scheme is

λ̃Mk
(j+1)

= λ̃Mk
(j)

+ ρj

(
λMk

(j+1) − λ̃Mk
(j)
)
, (A.9)

for k = 1, . . . , Ki, and

λ̃Ql
(j+1)

= λ̃Ql
(j)

+ ρj

(
λQl

(j+1) − λ̃Ql
(j)
)
, (A.10)

for l = 1, . . . , L, respectively, where λ̃Mk
(j)

and λ̃Ql
(j)

denote the j-th factor loading itera-

tions of the AEM algorithm and λMk
(j+1)

and λQl
(j+1)

are obtained from (A.7) and (A.8),

respectively. Moreover, ρj is the adaptive factor that is able to grow over the iterations,

increasing the learning rate relative to the conventional M-step. We follow Salakhutdinov

and Roweis (2003) and use the update ρj+1 = αρj with ρ1 = 1 and α = 1.1. To ensure

monotonic increments, we follow Salakhutdinov and Roweis (2003) and reset ρj+1 = 1,
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λ̃Mk
(j+1)

= λMk
(j+1)

for all k = 1, . . . , K, and λ̃Ql
(j+1)

= λQl
(j+1)

for all l = 1, . . . , L in case

the likelihood does not improve in iteration j+1, after which the algorithm continues. A

comparison of the convergence in estimating the sector-specific mixed-frequency DFMs

using the standard M-step and adaptive M-step for the loadings is given in Appendix A.3.

Moving to the factor persistence ϕ in Φt, recall that ϕ appears twice in Φt and is thus

bounded by certain restrictions. To incorporate this restriction, we follow Holmes (2013)

and write the matrix Bt in equation (A.1) in its vectorized form, that is,

vec(Bt) = at + dϕ,

where vec(Bt) = (ϕ, 1
3
ϕ, 0, ξt)

′, at = (0, 0, 0, ξt)
′ and d = (1, 1

3
, 0, 0)′. Furthermore, the

covariance matrix of the error term gηt is equal to gg
′, which is not invertable. Instead, we

follow Holmes (2013) and pre-multiply the left- and right-hand side of the state equation

corresponding to xt with Ξ = (g′g)−1g′, which only requires the invertability of g′g

and does not affect the argument of ϕ that maximizes the expected complete data log-

likelihood. Consequently, we can write the partial derivative with respect to ϕ as

∂

∂ϕ
L(Θ;Θ(j)) =

∂

∂ϕ

(
− 1

2

T∑
t=1

E(j)

[
(xt −Btxt−1)

′Ξ ′Ξ(xt −Btxt−1)
∣∣∣Y ])

=
∂

∂ϕ

(
− 1

2

T∑
t=1

E(j)

[(
xt − Υt−1 vec(Bt)

)′
Q
(
xt − Υt−1 vec(Bt)

)∣∣∣Y ])

=
∂

∂ϕ

(
− 1

2

T∑
t=1

E(j)

[(
xt − Υt−1(at + dϕ)

)′
Q
(
xt − Υt−1(at + dϕ)

∣∣∣Y ])

=
∂

∂ϕ

(
− 1

2

T∑
t=1

E(j)

[
− x′

tQΥt−1dϕ+ a′
tΥ

′
t−1QΥt−1dϕ

− d′Υ ′
t−1Qxtϕ+ d′Υ ′

t−1QΥt−1atϕ+ d′Υ ′
t−1QΥt−1dϕ

2
∣∣∣Y ])

=
T∑
t=1

E(j)

[
d′Υ ′

t−1Qxt − d′Υ ′
t−1QΥt−1at − d′Υ ′

t−1QΥt−1dϕ
∣∣∣Y ])

where the second equality follows from defining Υt−1 = (x′
t−1⊗I2) andQ = Ξ ′Ξ. Setting
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equal to zero and rearranging gives

ϕ(j+1) =

∑T
t=1 d

′
(
vec
(
QE(j)

[
xtx

′
t−1

∣∣Y ])− (E(j)

[
xt−1x

′
t−1

∣∣Y ]⊗Q
)
at

)
∑T

t=1 d
′
(
E(j)

[
xt−1x′

t−1

∣∣Y ]⊗Q
)
d

,

where we use that

E(j)

[
Υ ′

t−1QΥt−1

∣∣∣Y ] = E(j)

[
(x′

t−1 ⊗ I2)
′Q(x′

t−1 ⊗ I2)
∣∣∣Y ]

= E(j)

[
(xt−1 ⊗ I2)(x

′
t−1 ⊗Q)

∣∣∣Y ]
= E(j)

[
xt−1x

′
t−1 ⊗Q

∣∣∣Y ]
= E(j)

[
xt−1x

′
t−1

∣∣∣Y ]⊗Q,

and

E(j)

[
Υ ′

t−1Qxt

∣∣∣Y ] = E(j)

[
(x′

t−1 ⊗ I2)
′Qxt

∣∣∣Y ]
= E(j)

[
(xt−1 ⊗Q)xt

∣∣∣Y ]
= E(j)

[
vec
(
Qxtx

′
t−1

)∣∣∣Y ]
= vec

(
QE(j)

[
xtx

′
t−1

∣∣Y ]).
Lastly, turning to the parameters corresponding to the initial conditions µ0 and V0, we

get

∂

∂µ0

L(Θ;Θ(j)) =
∂

∂µ0

(
− 1

2
E(j)

[
(z0 − µ0)

′V −1
0 (z0 − µ0)

∣∣∣Y ])
= V −1

0

(
E(j)

[
z0

∣∣Y ]− µ0

)
,

and

∂

∂V0

L(Θ;Θ(j)) =
∂

∂V0

(
− 1

2
log |V0| −

1

2
E(j)

[
(z0 − µ0)

′V −1
0 (z0 − µ0)

∣∣∣Y ])
= −1

2
V −1

0 +
1

2
V −1

0 E(j)

[
(z0 − µ0)(z0 − µ0)

′
∣∣∣Y ]V −1

0 .

Setting equal to zero and rearranging gives
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µ
(j+1)
0 = E(j)

[
z0

∣∣Y ],
and, also taking into account that V0 should be diagonal,

V
(j+1)
0 = diag

(
E(j)

[
(z0 − µ0)(z0 − µ0)

′
∣∣∣Y ]),

which can both be obtained by the Kalman smoother.
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A.3 Convergence comparison of EM and AEM algorithms

Figure A.1: Log-likelihood values over iterations until convergence (based on tolerance
of ϵ = 10−8) or reaching maximum number of iterations (J = 5, 000) of the EM and AEM
algorithm in estimating sector-specific mixed-frequency dynamic factor models.
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Figure A.1: Log-likelihood values over iterations until convergence (based on tolerance
of ϵ = 10−8) or reaching maximum number of iterations (J = 5, 000) of the EM and AEM
algorithm in estimating sector-specific mixed-frequency dynamic factor models (contin-
ued).
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B Description of data

Table B.1: Overview of sector-level and aggregate economic series

NAICS Code Sector Variables Frequency Starting date Source

11 Agriculture, forestry, fishing, and hunting Real GDP Quarterly 2005Q1 BEA
11 Agriculture, forestry, fishing, and hunting Employment level Monthly 1948M1 FRED
11 Agriculture, forestry, fishing, and hunting Continued UI claims Monthly 2005M2 DOL
11 Agriculture, forestry, fishing, and hunting Personal income Quarterly 1998Q1 BEA

21 Mining Real GDP Quarterly 2005Q1 BEA
21 Mining Industrial production Monthly 1919M1 FRB
21 Mining Employment level Monthly 1939M1 BLS
21 Mining Continued UI claims Monthly 2003M12 DOL
21 Mining Fuel sales of total crude oil and petroleum products Monthly 1981M1 EIA
21 Mining Personal income Quarterly 1988Q1 BEA

22 Utilities Real GDP Quarterly 2005Q1 BEA
22 Utilities Industrial production Monthly 1939M1 FRB
22 Utilities Employment level Monthly 1964M1 BLS
22 Utilities Continued UI claims Monthly 2003M12 DOL
22 Utilities Revenue Quarterly 2010Q1 CB
22 Utilities Personal income Quarterly 1998Q1 BEA

23 Construction Real GDP Quarterly 2005Q1 BEA
23 Construction Employment level Monthly 1939M1 BLS
23 Construction Continued UI claims Monthly 2003M12 DOL
23 Construction Personal income Quarterly 1998Q1 BEA

31-33 Manufacturing Real GDP Quarterly 2005Q1 BEA
31-33 Manufacturing Industrial production Monthly 1972M1 FRB
31-33 Manufacturing Employment level Monthly 1939M1 BLS
31-33 Manufacturing Continued UI claims Monthly 2003M12 DOL
31-33 Manufacturing Manufacturers sales Monthly 1992M1 CB
31-33 Manufacturing Personal income Quarterly 1998Q1 BEA
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Table B.1: Continued

NAICS Code Sector Variables Frequency Starting date Source

42 Wholesale trade Real GDP Quarterly 2005Q1 BEA
42 Wholesale trade Employment level Monthly 1939M1 BLS
42 Wholesale trade Continued UI claims Monthly 2004M10 DOL
42 Wholesale trade Wholesalers sales Monthly 1992M1 CB
42 Wholesale trade Personal income Quarterly 1998Q1 BEA

44-45 Retail trade Real GDP Quarterly 2005Q1 BEA
44-45 Retail trade Employment level Monthly 1939M1 BLS
44-45 Retail trade Continued UI claims Monthly 2005M2 DOL
44-45 Retail trade Retailers sales Monthly 1992M1 CB
44-45 Retail trade Personal income Quarterly 1998Q1 BEA

48-49 Transportation and warehousing Real GDP Quarterly 2005Q1 BEA
48-49 Transportation and warehousing Employment level Monthly 1972M1 BLS
48-49 Transportation and warehousing Continued UI claims Monthly 2005M2 DOL
48-49 Transportation and warehousing Revenue Quarterly 2010Q1 CB
48-49 Transportation and warehousing Personal income Quarterly 1998Q1 BEA

51 Information Real GDP Quarterly 2005Q1 BEA
51 Information Industrial production Monthly 1972M1 FRB
51 Information Employment level Monthly 1939M1 BLS
51 Information Continued UI claims Monthly 2005M2 DOL
51 Information Revenue Quarterly 2003Q4 CB
51 Information Personal income Quarterly 1998Q1 BEA

52 Finance and insurance Real GDP Quarterly 2005Q1 BEA
52 Finance and insurance Employment level Monthly 1990M1 BLS
52 Finance and insurance Continued UI claims Monthly 2003M12 DOL
52 Finance and insurance Revenue Quarterly 2009Q3 CB
52 Finance and insurance Personal income Quarterly 1998Q1 BEA

53 Real estate and rental and leasing Real GDP Quarterly 2005Q1 BEA
53 Real estate and rental and leasing Employment level Monthly 1990M1 BLS
53 Real estate and rental and leasing Continued UI claims Monthly 2005M2 DOL
53 Real estate and rental and leasing Revenue Quarterly 2012Q3 CB
53 Real estate and rental and leasing Personal income Quarterly 1998Q1 BEA
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Table B.1: Continued

NAICS Code Sector Variables Frequency Starting date Source

54 Professional, scientific, and technical services Real GDP Quarterly 2005Q1 BEA
54 Professional, scientific, and technical services Employment level Monthly 1939M1 BLS
54 Professional, scientific, and technical services Continued UI claims Monthly 2003M12 DOL
54 Professional, scientific, and technical services Revenue Quarterly 2006Q3 CB
54 Professional, scientific, and technical services Personal income Quarterly 1998Q1 BEA

55 Management of companies and enterprises Real GDP Quarterly 2005Q1 BEA
55 Management of companies and enterprises Employment level Monthly 1990M1 BLS
55 Management of companies and enterprises Continued UI claims Monthly 2005M2 DOL
55 Management of companies and enterprises Personal income Quarterly 1998Q1 BEA

56 Administrative and waste management services Real GDP Quarterly 2005Q1 BEA
56 Administrative and waste management services Employment level Monthly 1990M1 BLS
56 Administrative and waste management services Continued UI claims Monthly 2005M2 DOL
56 Administrative and waste management services Revenue Quarterly 2006Q3 CB
56 Administrative and waste management services Personal income Quarterly 1998Q1 BEA

61 Educational services Real GDP Quarterly 2005Q1 BEA
61 Educational services Employment level Monthly 1990M1 BLS
61 Educational services Continued UI claims Monthly 2005M2 DOL
61 Educational services Revenue Quarterly 2010Q1 CB
61 Educational services Personal income Quarterly 1998Q1 BEA

62 Health care and social assistance Real GDP Quarterly 2005Q1 BEA
62 Health care and social assistance Employment level Monthly 1990M1 BLS
62 Health care and social assistance Continued UI claims Monthly 2005M2 DOL
62 Health care and social assistance Revenue Quarterly 2009Q1 CB
62 Health care and social assistance Personal income Quarterly 1998Q1 BEA

71 Arts, entertainment, and recreation Real GDP Quarterly 2005Q1 BEA
71 Arts, entertainment, and recreation Employment level Monthly 1990M1 BLS
71 Arts, entertainment, and recreation Continued UI claims Monthly 2005M2 DOL
71 Arts, entertainment, and recreation Revenue Quarterly 2009Q1 CB
71 Arts, entertainment, and recreation Personal income Quarterly 1998Q1 BEA
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Table B.1: Continued

NAICS Code Sector Variables Frequency Starting date Source

72 Accommodation and food services Real GDP Quarterly 2005Q1 BEA
72 Accommodation and food services Employment level Monthly 1990M1 BLS
72 Accommodation and food services Continued UI claims Monthly 2005M2 DOL
72 Accommodation and food services Revenue Quarterly 1992M1 CB
72 Accommodation and food services Personal income Quarterly 1998Q1 BEA

81 Other services (except public administration) Real GDP Quarterly 2005Q1 BEA
81 Other services (except public administration) Employment level Monthly 1939M1 BLS
81 Other services (except public administration) Continued UI claims Monthly 2003M12 DOL
81 Other services (except public administration) Revenue Quarterly 2009Q1 CB
81 Other services (except public administration) Personal income Quarterly 1998Q1 BEA

92 Public administration Real GDP Quarterly 2005Q1 BEA
92 Public administration Employment level Monthly 1939M1 BLS
92 Public administration Continued UI claims Monthly 2003M12 DOL
92 Public administration Personal income Quarterly 1998Q1 BEA

Total Real GDP Quarterly 1947Q1 BEA
Total Industrial production Monthly 1919M1 FRB
Total Employment level Monthly 1939M1 BLS
Total Initial UI claims Monthly 1967M1 DOL
Total Manufacturing and trade sales Monthly 1967M1 CB
Total Personal income (less transfer payments) Monthly 1959M1 BEA

Notes: This table describes the details of the available sector-level economic series at the two-digit NAICS level and the aggregate economic series. The data sources
are the U.S. Bureau of Economic Analaysis (BEA), the Federal Reserve Board (FRB), the U.S. Bureau of Labor Statistics (BLS), the U.S. Department of Labor
(DOL), the U.S. Energy Information Administration (EIA) and the U.S. Census Bureau (CB).

14



C Robustness to covid observations

Figure C.1: Sector-level economic condition indices estimated with and without ignoring
the covid observations (March 2020 to June 2020) as determined by Maroz et al. (2021)
and Schorfheide and Song (2022) and indicated with red shaded areas, including the
correlations between the two series.
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Figure C.1: Sector-level economic condition indices estimated with and without ignoring
the covid observations (March 2020 to June 2020) as determined by Maroz et al. (2021)
and Schorfheide and Song (2022) and indicated with red shaded areas, including the
correlations between the two series (continued).
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D Cross-correlations of sectoral economic series

Figure D.1: Cross-correlations of sector-level economic growth series based on the in-
tersection of available observations.
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Figure D.1: Cross-correlations of sector-level economic growth series based on the in-
tersection of available observations (continued).
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E Robustness analysis of comovement measures

Figure E.1: Spearman’s rank correlation between sector-level and aggregate economic
condition indices over full-sample (January 1991 - September 2021) and pre-covid-sample
(January 1991 - December 2019).

Figure E.2: Spearman’s rank correlation between sector-level and aggregate economic
condition indices over recession periods (as indicated by the NBER recession dates (± one
year)) and expansion periods.
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Figure E.3: Correlation-based synchronization measures (pre-covid sample) and rank-
correlation-based synchronization measures between sectoral and total economy growth
cycles based on the two phases determined by the Bry and Boschan (1971) algorithm
and the four phases with additional distinction between positive and negative economic
condition indices.

20



F Drivers of sectoral economic conditions

Figure F.1: Sector-level economic conditions indices and their drivers for a selection of
sectors with gray shaded NBER recession periods.
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Figure F.1: Sector-level economic conditions indices and their drivers for a selection of
sectors with gray shaded NBER recession periods (continued).
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Figure F.1: Sector-level economic conditions indices and their drivers for a selection of
sectors with gray shaded NBER recession periods (continued).
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Figure F.1: Sector-level economic conditions indices and their drivers for a selection of
sectors with gray shaded NBER recession periods (continued).
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G Robustness analysis to number of common factors

Table G.1: Adjusted R2’s of regressing sector-level and aggregate economic conditions indices on three smoothed common factor estimates.

Full sample (1991M1 - 2021M9) Pre-covid sample (1991M1 - 2019M12)

R̄2(1) R̄2(2) R̄2(3) R̄2(1+2+3) R̄2(1) R̄2(2) R̄2(3) R̄2(1+2+3)

Panel A: Total economy

Aggregate ECI 0.93 0.29 0.08 0.93 0.94 0.00 0.18 0.95
Aggregate IP 0.78 0.44 0.01 0.88 0.83 0.05 0.15 0.86

Panel B: Sectors

Agriculture, forestry, fishing, and hunting 0.00 0.01 0.01 0.02 0.00 0.03 0.05 0.08
Mining 0.46 0.06 0.00 0.52 0.24 0.07 0.12 0.30
Utilities 0.09 0.05 0.01 0.13 0.08 0.03 0.00 0.12
Construction 0.75 0.40 0.50 1.00 0.73 0.20 0.24 1.00
Manufacturing 0.86 0.53 0.01 1.00 0.96 0.07 0.23 1.00
Wholesale trade 0.83 0.42 0.03 0.89 0.85 0.03 0.20 0.86
Retail trade 0.87 0.31 0.13 0.88 0.85 0.02 0.24 0.89
Transportation and warehousing 0.85 0.19 0.03 0.85 0.73 0.01 0.31 0.76
Information 0.71 0.22 0.10 0.72 0.59 0.01 0.07 0.63
Finance and insurance 0.45 0.07 0.21 0.55 0.26 0.15 0.05 0.43
Real estate, rental and leasing 0.86 0.14 0.16 0.90 0.70 0.08 0.27 0.83
Professional, scientific, and technical services 0.59 0.29 0.06 0.62 0.55 0.00 0.10 0.55
Management of companies and enterprises 0.73 0.20 0.04 0.73 0.58 0.00 0.34 0.64
Administrative and waste management services 0.92 0.33 0.07 0.93 0.90 0.00 0.18 0.90
Educational services 0.32 0.06 0.00 0.68 0.00 0.09 0.04 0.13
Health care and social assistance 0.30 0.08 0.01 0.73 0.07 0.01 0.39 0.39
Arts, entertainment, and recreation 0.64 0.01 0.00 1.00 0.55 0.00 0.11 0.55
Accommodation and food services 0.68 0.00 0.00 0.92 0.71 0.03 0.35 0.81
Other services (except public administration) 0.76 0.01 0.03 0.91 0.54 0.09 0.11 0.66
Public administration 0.18 0.05 0.00 0.45 0.00 0.10 0.69 1.00

Notes: This table shows the adjusted R2’s (R̄2’s) of regressing the aggregate ECI and aggregate IP (Panel A) and sectoral ECIs (Panel B) on the estimates of the first common
factor (R̄2(1)), second common factor (R̄2(2)), third common factor (R̄2(3)), or all of them (R̄2(1 + 2 + 3)). The results are shown for full-sample (January 1991 - September 2021)
based estimated factors and regressions and pre-covid sample (January 1991 - December 2019) ones. The factors are estimated from the 20 sectoral ECIs using the dynamic factor
model given in equation (9).
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Table G.2: Adjusted R2’s of regressing sector-level and aggregate economic conditions indices on four smoothed common factor estimates.

Full sample (1991M1 - 2021M9) Pre-covid sample (1991M1 - 2019M12)

R̄2(1) R̄2(2) R̄2(3) R̄2(4) R̄2(1+2+3+4) R̄2(1) R̄2(2) R̄2(3) R̄2(4) R̄2(1+2+3+4)

Panel A: Total economy

Aggregate ECI 0.84 0.37 0.20 0.00 0.94 0.93 0.48 0.00 0.05 0.95
Aggregate IP 0.60 0.56 0.12 0.02 0.90 0.82 0.25 0.03 0.01 0.86

Panel B: Sectors

Agriculture, forestry, fishing, and hunting 0.00 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.08 0.10
Mining 0.45 0.16 0.00 0.12 0.58 0.22 0.06 0.07 0.03 0.35
Utilities 0.06 0.08 0.00 0.00 0.14 0.08 0.01 0.03 0.00 0.10
Construction 0.74 0.33 0.69 0.01 1.00 0.70 0.80 0.06 0.05 1.00
Manufacturing 0.67 0.69 0.14 0.00 1.00 0.96 0.29 0.04 0.03 1.00
Wholesale trade 0.69 0.55 0.15 0.00 0.89 0.85 0.28 0.01 0.03 0.86
Retail trade 0.80 0.35 0.27 0.01 0.90 0.83 0.57 0.00 0.04 0.89
Transportation and warehousing 0.82 0.33 0.11 0.08 0.90 0.74 0.39 0.03 0.06 0.76
Information 0.67 0.29 0.21 0.01 0.72 0.64 0.45 0.00 0.60 1.00
Finance and insurance 0.52 0.07 0.25 0.01 0.56 0.25 0.26 0.13 0.01 0.46
Real estate, rental and leasing 0.91 0.19 0.25 0.02 0.91 0.69 0.59 0.03 0.05 0.83
Professional, scientific, and technical services 0.54 0.39 0.18 0.05 0.68 0.58 0.35 0.01 0.32 0.75
Management of companies and enterprises 0.74 0.36 0.13 0.27 1.00 0.58 0.39 0.04 0.05 0.64
Administrative and waste management services 0.81 0.43 0.20 0.00 0.93 0.90 0.46 0.01 0.07 0.90
Educational services 0.44 0.02 0.00 0.02 0.71 0.00 0.00 0.11 0.02 0.12
Health care and social assistance 0.39 0.02 0.02 0.01 0.80 0.06 0.36 0.58 0.00 1.00
Arts, entertainment, and recreation 0.75 0.01 0.00 0.06 0.99 0.57 0.26 0.00 0.14 0.60
Accommodation and food services 0.78 0.02 0.01 0.04 0.94 0.69 0.52 0.01 0.00 0.81
Other services (except public administration) 0.84 0.04 0.05 0.00 0.94 0.53 0.42 0.06 0.03 0.67
Public administration 0.25 0.03 0.00 0.00 0.48 0.00 0.01 0.28 0.12 0.42

Notes: This table shows the adjusted R2’s (R̄2’s) of regressing the aggregate ECI and aggregate IP (Panel A) and sectoral ECIs (Panel B) on the estimates of the first common factor (R̄2(1)),
second common factor (R̄2(2)), third common factor (R̄2(3)), fourth common factor (R̄2(4)), or all of them (R̄2(1+2+3+4)). The results are shown for full-sample (January 1991 - September
2021) based estimated factors and regressions and pre-covid sample (January 1991 - December 2019) ones. The factors are estimated from the 20 sectoral ECIs using the dynamic factor model
given in equation (9).
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H Robustness analysis of estimated common factors

Figure H.1: Smoothed estimate of a single common factor (gt) estimated by excluding
the service-providing sectors with gray shaded NBER recession periods.

Figure H.2: Smoothed estimates of common factors (gt) estimated up to December
2019 (excluding the covid pandemic) with gray shaded NBER recession periods.

Figure H.3: Factor loading estimates across sectors of common factors (Γ ) estimated
up to December 2019 (excluding the covid pandemic).
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